Differentially Private CountSketch

Improved utility analysis

Rasmus Pagh and Mikkel Thorup

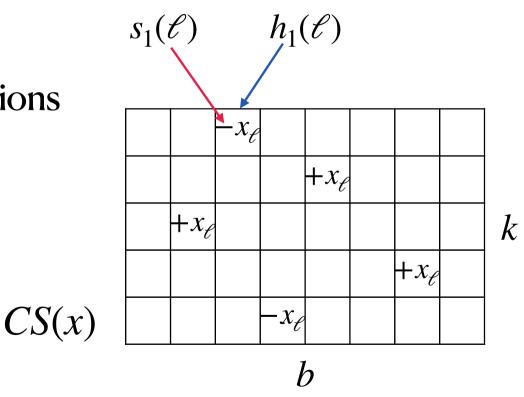
NeurIPS 2022

CountSketch

[Charikar, Chen, Farach-Colton 2002]

- Linear sketch, $CS : \mathbf{R}^d \to \mathbf{R}^{k \times b}$
- Defined using random hash functions $h_1, \dots, h_k : [d] \rightarrow [b]$ $s_1, \dots, s_k : [d] \rightarrow \{-1, +1\}$

This talk: Assume hash functions are *fully* independent

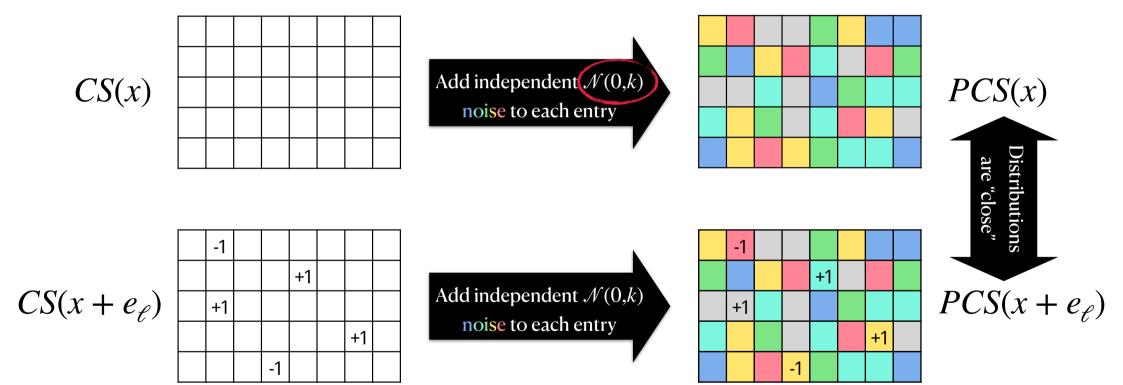


CountSketch estimator

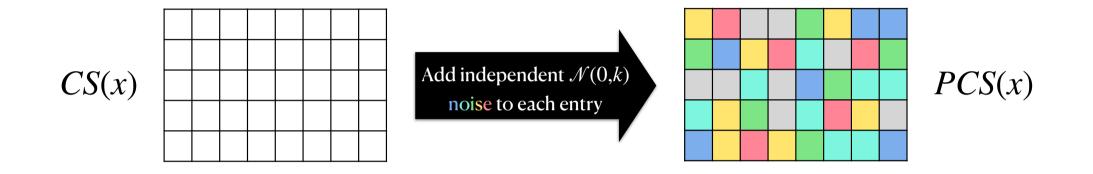
- Simple estimators: $s_1(\ell)CS(x)_{1,h_1(\ell)}, \ldots, s_k(\ell)CS(x)_{k,h_k(\ell)}$
- Median estimator: $\hat{x}_{\ell} = \text{median}(s_i(\ell)CS(x)_{i,h_i(\ell)} \mid i \in [k])$

Theorem (Minton & Price, 2014) For every $\alpha \in [0, 1]$ and $\Delta = ||\operatorname{tail}_b(x)||_2/\sqrt{b}$, $\Pr[|\hat{x}_{\ell} - x_{\ell}| > \alpha \Delta] < 2 \exp(-\Omega(\alpha^2 k))$, Δ is "maximum error of CountSketch"

Making CountSketch differentially private



Estimation from Private CountSketch



 $\hat{x}_{\ell} = \text{median}(s_i(\ell)CS(x)_{i,h_i(\ell)} \mid i \in [k]) \qquad \bar{x}_{\ell} = \text{median}(s_i(\ell)PCS(x)_{i,h_i(\ell)} \mid i \in [k])$

The question: How much worse is the private estimator \bar{x}_{ℓ} compared to \hat{x}_{l} ?

Our result

Theorem For every $\alpha \in [0, 1]$ and $\Delta = ||\operatorname{tail}_b(x)||_2 / \sqrt{b}$, $\Pr[|\bar{x}_{\ell} - x_{\ell}| > \alpha \max\{\Delta, \sigma\}] < 2 \exp(-\Omega(\alpha^2 k))$

Low noise ($\sigma \leq \Delta$):

Same tail bound as CountSketch

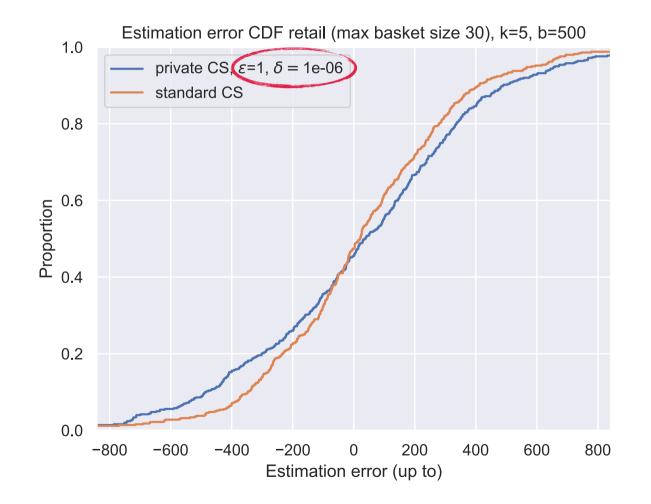
High noise ($\sigma > \Delta$), $k = \sigma^2$: Tail like $\mathcal{N}(0,1)$ noise + $\exp(-\Omega(k))$

<u>Message of our work</u>: Estimation error of Private CountSketch is either the CountSketch error or the error needed for DP, whichever is larger

Proof ingredients (about 1 page)

- <u>Two cases</u>:
 - Adding noise with $\sigma \leq \Delta$ maintains the probability of a good simple estimator up to a constant factor
 - Adding noise with $\sigma > \Delta$, the probability of a good simple estimator can be bounded up to a constant factor in terms of σ
- Lemma from Minton & Price, using symmetry of estimators, finishes the argument

Experiments – market basket data



Related work in NeurIPS 2022

Differentially Private Linear Sketches: Efficient Implementations and Applications

Fuheng Zhao^{*†} fuheng_zhao@ucsb.edu Dan Qiao*† danqiao@ucsb.edu

Rachel Redberg* rredberg@ucsb.edu

Divyakant Agrawal* agrawal@cs.ucsb.edu Amr El Abbadi* amr@cs.ucsb.edu Yu-Xiang Wang* yuxiangw@ucsb.edu