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Out-of-Distribution (OOD) generalization

Models learned with Empirical Risk Minimization often:

- are prone to spurious correlations 


- fail catastrophically in OOD data  


( Arjovsky et al., 2019; DeGrave et al. 2021; Wengong Jin, 2021; Koh et al., 2021; )
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Out-of-Distribution (OOD) generalization

The goal of Out-of-Distribution (OOD) generalization:


given a subset of training environments/domains , 

where each  corresponds to a dataset  and a loss . 

ℰtr ⊆ ℰall
e ∈ ℰ 𝒟e ℒe

min
f:𝒳→𝒴

max
e∈ℰall

ℒe( f )

( Arjovsky et al., 2019; DeGrave et al. 2021; Wengong Jin, 2021; Koh et al., 2021; )



4 (Peters et al., 2015; Arjovsky et al., 2019; Bottou et al., 2021;)

Out-of-Distribution (OOD) generalization

Leveraging the Invariance Principle from causality, previous approaches

aim to learn an invariant predictor , 

 


f
min
f=w∘φ ∑

e∈ℰtr

ℒe(w ∘ φ),

that is simultaneously optimal across different environments/domains. 

s . t . w ∈ arg min
w̄

ℒe(w̄ ∘ φ), ∀e ∈ ℰtr,
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(Peters et al., 2015; Arjovsky et al., 2019; Rosenfeld et al., 2021; Kamath et al., 2021; Ahuja et al., 2021;)

Out-of-Distribution (OOD) generalization

Previous approaches inspired by the Invariance Principle from causality can: 

- help to learn the invariant representations 

- but only works on linear regime

- but only works on single distribution shifts

- but requires environment/domain label


🥲 
🥲 

😋

🥲 
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OOD generalization on graphs are more challenging

,{ } { } =fGNN( ) “House”

A Graph Neural Network (GNN) makes predictions taking both structure-level and node 
attribute-level features into account.
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OOD generalization on graphs are more challenging

,{ } { } =fGNN( ) “House”

A Graph Neural Network (GNN) makes predictions taking both structure-level and node 
attribute-level features into account.

( Knyazev et al. 2019; Hu et al., 2020; Koh et al., 2021; Gui et al., 2022 )

Structure-level shifts Attribute-level shifts Mixture of structure-level and attribute-level shifts
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OOD generalization on graphs are more challenging
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(Ying et al., 2019; Luo et al., 2020; Wu et al., 2022;)

OOD generalization on graphs 

are much more challenging!

A Graph Neural Network (GNN) makes predictions taking both structure-level and attribute-
level features into account.
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OOD generalization on graphs are more challenging

Training Data Testing Data

“House”

“House”

“Cycle”

“House”

“Cycle”

Task

Training Data Testing Data

“House”

“House”

“Cycle”

“House”

“Cycle”

Task

Training Data Testing Data

“House”

“House”

“Cycle”

“House”

“Cycle”

Task

Training Data Testing Data

“House”

“House”

“Cycle”

“House”

“Cycle”

Task,{ } { } =fGNN( ) “House”

• Graphs are highly non-linear

(Ying et al., 2019; Luo et al., 2020; Wu et al., 2022;)

OOD generalization on graphs 

are much more challenging!

A Graph Neural Network (GNN) makes predictions taking both structure-level and attribute-
level features into account.
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OOD generalization on graphs are more challenging

OOD generalization on graphs 

are much more challenging!
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🥲 

🥲 • Graphs are highly non-linear

• Attribute-level shifts

(Ying et al., 2019; Luo et al., 2020; Wu et al., 2022;)

A Graph Neural Network (GNN) makes predictions taking both structure-level and attribute-
level features into account.
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OOD generalization on graphs are more challenging
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🥲 

• Graphs are highly non-linear

• Attribute-level shifts

• Structure-level shifts

(Ying et al., 2019; Luo et al., 2020; Wu et al., 2022;)

OOD generalization on graphs 

are much more challenging!

A Graph Neural Network (GNN) makes predictions taking both structure-level and attribute-
level features into account.
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OOD generalization on graphs are more challenging
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• Graphs are highly non-linear

• Attribute-level shifts

• Structure-level shifts

• Mixed shifts in different modes🥲 

🥲 

🥲 

(Ying et al., 2019; Luo et al., 2020; Wu et al., 2022;)

OOD generalization on graphs 

are much more challenging!

A Graph Neural Network (GNN) makes predictions taking both structure-level and attribute-
level features into account.
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OOD generalization on graphs are more challenging
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• Graphs are highly non-linear

• Attribute-level shifts

• Structure-level shifts

• Mixed shifts in different modes

• Expensive environment labels

🥲 

🥲 

🥲 

(Ying et al., 2019; Luo et al., 2020; Wu et al., 2022;)

OOD generalization on graphs 

are much more challenging!

A Graph Neural Network (GNN) makes predictions taking both structure-level and attribute-
level features into account.

No environment partitions
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OOD generalization on graphs are more challenging

• Graphs are highly non-linear

• Attribute-level shifts

• Structure-level shifts

• Mixed shifts in different modes

• Expensive environment labels

OOD failures of GNNs training objectives and architectures
Mixed with graph size shiftsStructure and attribute shifts Structure and attribute shifts

🥲 

🥲 

🥲 
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(Ying et al., 2019; Luo et al., 2020; Wu et al., 2022;)

OOD generalization on graphs 

are much more challenging!
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OOD generalization on graphs are more challenging
OOD generalization on graphs 

are much more challenging!

• Graphs are highly non-linear

• Attribute-level shifts

• Structure-level shifts

• Mixed shifts in different modes

• Expensive domain labels

OOD failures of GNNs training objectives and architectures

(Peng et al., 2019; Knyazev et al., 2019; Hu et al., 2020; DeGrave et al. 2021; Ji et al., 2022)

Mixed with graph size shiftsStructure and attribute shifts Structure and attribute shifts

🥲 

🥲 

🥲 
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As existing approaches are down…

How can we define and capture the invariance on graphs?

Can we train a GNN that is generalizable to OOD graphs?
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Invariance Principle Meets Graph Neural Networks
for generalizing to out-of-distribution graph data

Figure source: Léon Bottou
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Structural Causal Models

Graph Generation Process:

fgen : 𝒵 → 𝒢

C S Spurious featuresInvariant features

Structural Causal Models for graph generalization
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Structural Causal Models

Realistic examples

Graph Generation Process:

fgen : 𝒵 → 𝒢

C S Spurious featuresInvariant features

(Yu et al., 2021; Miao et al., 2022;)

Structural Causal Models for graph generalization
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Structural Causal Models

Step 1: Invariant subgraph identification

Featurizer GNN g : 𝒢 → 𝒢c

CIGA: Causality Inspired Invariant Graph LeArning
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Structural Causal Models

Step 1: Invariant subgraph identification

Featurizer GNN g : 𝒢 → 𝒢c

CIGA: Causality Inspired Invariant Graph LeArning

Step 2: Label prediction

Classifier GNN fc : 𝒢c → 𝒴
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Structural Causal Models

Step 1: Invariant subgraph identification

Featurizer GNN g : 𝒢 → 𝒢c

CIGA: Causality Inspired Invariant Graph LeArning

Step 2: Label prediction

Overall objective

Classifier GNN fc : 𝒢c → 𝒴

InvariantInformative



22

Structural Causal Models

CIGAv1: when  is known and fixed|Gc | = sc

CIGAv2: eliminate the size constraint

CIGA: Causality Inspired Invariant Graph LeArning
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CIGA outperforms previous methods under structure and mixed shifts by a significant margin up to 10%.

Theoretical results (Informal):
Given the previous SCMs, each solution to CIGAv1  or CIGAv2 elicits a GNN that is generalizable 
against various distribution shifts, with some mild assumptions on training environments, and the 
expressivity of GNNs encoders. 

Experiments on synthetic graph distribution shifts
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CIGA outperforms previous methods under other realistic shifts by a significant margin up to 10%.

Theoretical results (Informal):
Given the previous SCMs, each solution to CIGAv1  or CIGAv2 elicits a GNN that is generalizable 
against various distribution shifts, with some mild assumptions on training environments, and the 
expressivity of GNNs encoders. 

Experiments on realistic graph distribution shifts
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CIGA is the only approach that consistently outperforms ERM in the challenging setting 
from AI-aided drug discovery — DrugOOD. 

CIGA outperforms previous methods under other realistic shifts by a significant margin up to 10%.

Experiments on realistic graph distribution shifts
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Interpretable Studies of CIGA

CIGA finds interesting critical functional groups/sub-molecules in OOD molecular affinity prediction. 

(Ji et al., 2022;)



Summary

Through the lens of causality, we establish general SCMs to characterize the 
distribution shifts on graphs, and generalize the invariance principle to graphs.

We instantiate the invariance principle through a novel framework CIGA, where the 
prediction is decomposed into the subgraph identification and classification.

We show that the provable identification of the underlying invariant subgraph can 
be achieved using a contrastive strategy both theoretically and empirically.

Contact: yqchen@cse.cuhk.edu.hk 

Thank you!
Paper Code 
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