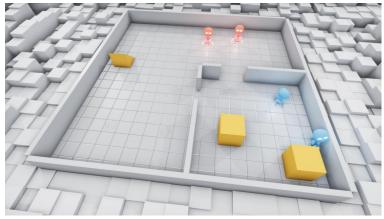
Non-Linear Coordination Graphs

Yipeng Kang*, Tonghan Wang*, Qianlan Yang*, Xiaoran Wu, Chongjie Zhang

Multi-Agent Reinforcement Learning



Emergent Tool Use

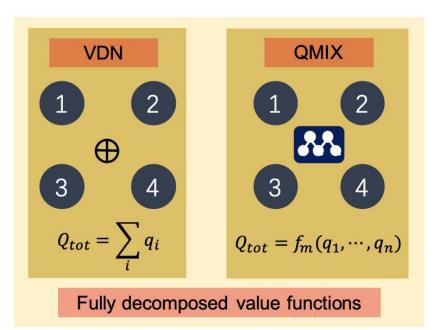
StarCraft II

One core problem for MARL

• Estimating Q_{tot}

- Why challenging?
 - Large action-observation space
 - Require high representational capacity for Q-networks
 - Selecting greedy action: $O(A^n)$
 - Exponential complexity: A is the number of action, n is the number of agent

Previous method: fully decomposition



VDN->QMIX->QPLEX

- Global maximizer of Q_{tot} can be obtained locally.

Problem:

- Miscoordination
- Relative Overgeneralization

Previous method: coordination graphs

• $\mathcal{G} = \langle \mathcal{V}, \mathcal{E} \rangle$ that represents a higher order decomposition:

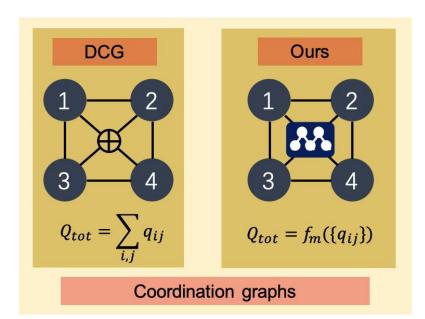
$$Q_{tot}(\boldsymbol{\tau}, \boldsymbol{a}) = \frac{1}{|\mathcal{V}|} \sum_{i} q_i(\tau_i, a_i) + \frac{1}{|\mathcal{E}|} \sum_{\{i,j\} \in \mathcal{E}} q_{ij}(\boldsymbol{\tau}_{ij}, \boldsymbol{a}_{ij})$$

Incorporating *pairwise* payoff functions

- Problem:
 - Linear decomposition, limited representational capacity

Our work

• Extends CGs to non-linear value decomposition



Major challenge

- $\hfill \mbox{Recall}$ one challenge of multi-agent Q
 - How to select greedy actions?
 - Conventional CGs use Max-Sum (message passing), but is only applicable to linear cases.
 - How to calculate for non-linear CGs?

Our approach

 Mixing network that composes the payoffs as Q_tot: ReLU-series activation functions induce *piece-wise linear* functions.

- A quick idea:
 - Max-Sum on each piece.
 - Problematic:
 - Given a linear region P_i and the piece ρ_i , run Max-Sum may get a solution located in $R_{j\neq i}$. (*The shifted solutions*)

How to solve this problem?

- The maximum of all local solutions.
 - Why does this work?
 - We first show that a shifted solution cannot be optimal

Lemma 1. Denote affine function pieces and their cells of a fully-connected feedforward mixing network with LeakyReLU activation as $\mathcal{P}_{all} = \{\rho_j\}_1^{2^m}$ and $\{P_j\}_1^{2^m}$. For \mathbf{q} in the cell of the rth piece, P_r , and $\forall \rho_s \in \mathcal{P}_{all}$, we have $\rho_r(\mathbf{q}) \geq \rho_s(\mathbf{q})$.

9

This means

• Global optimal solutions do not have this problem.

• Moreover, $\max_{\boldsymbol{q}} f_m(\boldsymbol{q}) = \max_{\boldsymbol{q}} \max_{\rho} \rho(\boldsymbol{q}) = \max_{\rho} \max_{\boldsymbol{q}} \rho(\boldsymbol{q})$

 Indicating that the maximum of local optima is the global optimum.

How many pieces need enumerating?

• Width of the hidden layer: *m*

• When m is small: 2^m

Enumerating slope configuration

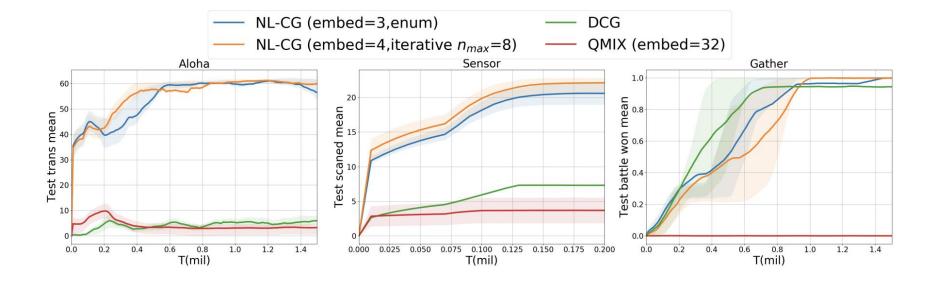
• When *m* is large:

$$n_{m,d} = \sum_{i=0}^d \binom{m}{d-i}$$

How to reduce time complexity?

- Based on Lemma 1, we give an iterative method
 - Step 1: Randomly select a piece ρ_j
 - Step 2: Run Max-Sum, get a solution x_j
 - Step 3: Calculate the real piece ho_{real}
 - Step 4: If $\rho_{real} = \rho_j$, return x_j ; Otherwise, move to ρ_{real} and go to Step 2.
- This algorithm guarantees a local optimum:
 - Monotonically increasing & finite inputs

Performance on the MACO benchmark



Thanks for your listening

Machine Intelligence Group

