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The rectified linear unit and deep neural networks

The rectified linear unit (ReLU) (Fukushima, 1980; Nair and Hinton, 2010) is
the most popular nonlinearity and building block in deep neural networks
(DNNs).

ReLU DNNs are also probably the most understandable nonlinear deep
models due to their ability to be “un-rectified” (Hwang and Heinecke, 2019).

The ability to demystify ReLU DNNs via “un-rectifying ReLUs” dates back to
a seminal work by Pascanu et al. in 2014.

A ReLU DNN divides the input space into many linear regions.

Bounds on the number of linear regions are studied by (Montúfar, 2017;
Raghu et al., 2017; Arora et al., 2018; Serra et al., 2018; Hinz and van de
Geer, 2019), just to name a few.
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Continuous piecewise linear (CPWL) functions

A neural network using rectified linear units represents a CPWL function.

Arora et al. (2018) proved that the reverse is also true: Any CPWL function
can be represented by a neural network using rectified linear units.

Question 1
How many hidden neurons are required for a ReLU network to represent a given
CPWL function?

Question 2
Can we find a network representing any given CPWL function?
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Bounds in prior work
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Figure: Any CPWL function Rn → R with q pieces or k distinct linear components can
be exactly represented by a ReLU network with at most h hidden neurons. Existing
bounds in the literature seem to imply the cost of representing a CPWL function in a
ReLU network is extremely high.
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Our work

n = 1

n = 2n = 1

invariant to n

1 5 10 15 20

101

105

109

1013

1017

Number of pieces q

N
um

b
er

of
hi
dd

en
ne
ur
on
s
h

n = 1

n = 1
n = 2

n = 1

n = 2

1 5 10 15 20

101

104

107

1010

Number of distinct linear components k
N
um

b
er

of
hi
dd

en
ne
ur
on
s
h Theorem 1 and 3

(Hertrich et al., 2021)
(He et al., 2020)

Figure: In Theorem 1 and 3, h = 0 when q = 1 or k = 1. The upper bounds given by
Theorem 1 and 3 are substantially lower than existing bounds in the literature, implying
that any CPWL function can be exactly realized by a ReLU network at a much lower
cost.
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Quadratic bounds

Theorem 1

Any CPWL function p : Rn → R with q pieces can be represented by a ReLU
network whose number of layers l , maximum width w , and number of hidden
neurons h satisfy

l ≤ 2 ⌈log2 q⌉+ 1, (1)

w ≤ I [q > 1]

⌈
3q

2

⌉
q, (2)

and

h ≤
(
3 · 2⌈log2 q⌉ + 2 ⌈log2 q⌉ − 3

)
q + 3 · 2⌈log2 q⌉ − 2 ⌈log2 q⌉ − 3. (3)

Furthermore, Algorithm 1 finds such a network in poly (n, q, L) time where L is the
number of bits required to represent every entry of the rational matrix Ai in the
polyhedron representation {x ∈ Rn|Aix ≤ bi} of the piece Xi for every i ∈ [q].
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A polynomial time algorithm satisfying the bounds

Algorithm Find a ReLU network that computes a given CPWL function

Require: A CPWL function p with pieces {Xi}i∈[q] of Rn.
Ensure: A ReLU network g computing g(x) = p(x),∀x ∈ Rn.
1: f1, f2, · · · , fk ← Find all distinct linear components of p
2: for i = 1, 2, · · · , q do
3: Ai ← ∅
4: for j = 1, 2 · · · , k do
5: if fj(x) ≥ p(x),∀x ∈ Xi then
6: Ai ← Ai

⋃
{j}

7: end if
8: end for
9: vi ← A ReLU network representing the min-affine function of {fm}m∈Ai

10: end for
11: v ← Combine ReLU networks v1, v2, · · · , vq in parallel
12: u ← A ReLU network computing the maximum of q elements
13: g ← A ReLU network computing the composition u ◦ v
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Bilinear bounds

Theorem 2

Any CPWL function p : Rn → R with k linear components and q pieces can be
represented by a ReLU network whose number of layers l , maximum width w , and
number of hidden neurons h satisfy

l ≤ ⌈log2 q⌉+ ⌈log2 k⌉+ 1, (4)

w ≤ I [k > 1]

⌈
3k

2

⌉
q, (5)

and

h ≤
(
3 · 2⌈log2 k⌉ + 2 ⌈log2 k⌉ − 3

)
q + 3 · 2⌈log2 q⌉ − 2 ⌈log2 k⌉ − 3. (6)

Furthermore, Algorithm 1 finds such a network in poly (n, k, q, L) time where L is
the number of bits required to represent every entry of the rational matrix Ai in
the polyhedron representation {x ∈ Rn|Aix ≤ bi} of the piece Xi for every i ∈ [q].
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On the number of linear components k

Theorem 3

Any CPWL function p : Rn → R with k linear components can be represented by
a ReLU network whose number of layers l , maximum width w , and number of
hidden neurons h satisfy

l ≤
⌈
log2 ϕ(n, k)

⌉
+ ⌈log2 k⌉+ 1, (7)

w ≤ I [k > 1]

⌈
3k

2

⌉
ϕ(n, k), (8)

and

h ≤
(
3 · 2⌈log2 k⌉ + 2 ⌈log2 k⌉ − 3

)
ϕ(n, k) + 3 · 2⌈log2 ϕ(n,k)⌉ − 2 ⌈log2 k⌉ − 3 (9)

where

ϕ(n, k) = min

 n∑
i=0

( k2−k
2

i

)
, k!

 . (10)
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Effect of the input dimension n
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Figure: Left: The upper bound of h in Theorem 3 grows much slower when n grows
sufficiently slower than k, leading to a much better upper bound compared to the
worst-case asymptotic bound O (k · k!) in Theorem 3. Middle: (Hertrich et al., 2021).
Right: (He et al., 2020).
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Open source implementation and run time of Algorithm 1

Code is available at https://github.com/kjason/CPWL2ReLUNetwork.
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Figure: The run time of Algorithm 1 is an average of 50 trials. Every trial runs Algorithm
1 with a random CPWL function whose input dimension is n and number of pieces is q.
The code provided in the above link is run on a computer (Microsoft Surface Laptop
Studio) with the Intel Core i7-11370H.
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