

On the Limitations of Stochastic Pre-processing Defenses

Yue Gao¹, Ilia Shumailov^{2,4}, Kassem Fawaz¹, Nicolas Papernot^{3,4} ¹University of Wisconsin–Madison, ²University of Cambridge, ³University of Toronto, ⁴Vector Institute

Background

Adversarial examples, defenses, and evaluations.

Adversarial Examples

Figure from Goodfellow et al. Explaining and harnessing adversarial examples. ICLR 2015.

Stochastic Pre-processing Defenses

Intuition: Adversarial examples must generalize to all transformations.

Does this strategy make the attack any harder?

Evaluations Rely on Adaptive Attacks

• Round 1 (2018 – 2019)

➢ Random Cropping, Random Rescaling, …

Obfuscated Gradients Give a False Sense of Security.

• Round 2 (2019 – 2020)

➢ MixUp, Random Pixel Dropping, …

On Adaptive Attacks to Adversarial Example Defenses.

• Round 3 (2019 – 2022)

Barrage of Random Transformations (BaRT).

Demystifying the Adversarial Robustness of Random Transformation Defenses.

• Round 4 (2022 – ?)

Diffusion Models for Adversarial Purification (DiffPure).

≻?

Lessons (not) Learned from Adaptive Attacks

- Adaptive attacks become hard to design & evaluate.
 - > **BaRT**: broken after 3 years on a smaller-scale dataset (ImageNet \rightarrow ImageNette).
 - > DiffPure: requires "1-4 high-end NVIDIA GPUs with 32 GB of memory."

Fundamental weaknesses remain unknown.

- > Why doesn't randomness provide robustness as we expected?
- > How could future defenses avoid the pitfalls of existing stochastic defenses?

We should look for fundamental limitations.

Lack of Sufficient Randomness

Limitation 1 of 2

6

Formulations

Prediction (majority vote)

$$F_{\text{vote}}(\boldsymbol{x}) \coloneqq \arg \max_{c \in [C]} \sum_{i=1}^{n} \mathbb{1} \left\{ \arg \max_{j \in [C]} \frac{f_{\boldsymbol{\theta}_i, j}(\boldsymbol{x}) = c}{sampled \text{ parameter } \theta_i \overset{\text{i.i.d.}}{\sim} \Theta} \right\}$$

Core Attack Techniques: PGD + EOT

• Projected Gradient Descent (PGD) sigma sinction $x^{i+1} \leftarrow x^i + \alpha \cdot \operatorname{sgn}\{\nabla \mathcal{L}(f_{\theta}(x^i), y)\}$ learning rate (step size)

 Expectation over Transformation (EOT) actual EOT

$$\boldsymbol{x}^{i+1} \leftarrow \boldsymbol{x}^{i} + \alpha \cdot \operatorname{sgn} \left\{ \mathbb{E}_{\boldsymbol{\theta} \sim \boldsymbol{\Theta}} \Big[\nabla \mathcal{L} \big(f_{\boldsymbol{\theta}}(\boldsymbol{x}^{i}), \boldsymbol{y} \big) \Big] \right\} \approx \boldsymbol{x}^{i} + \alpha \cdot \operatorname{sgn} \left\{ \frac{1}{m} \sum_{j=1}^{m} \nabla \mathcal{L} \big(f_{\boldsymbol{\theta}_{j}}(\boldsymbol{x}^{i}), \boldsymbol{y} \big) \right\}$$
estimated EOT

Literature's (Rightful) View of EOT

Initially proposed for *"synthesizing examples that are adversarial over a chosen distribution of transformations."* (Athalye et al.)

ICML 2018

ICML 2018

Adopted to "correctly compute the gradient over the expected transformation to the input." (Athalye et al.)

NeurIPS 2020

Became "standard technique for computing gradients of models with randomized components" (Tramèr et al.)

Finally, evaluations explicitly detect randomized components and enforce the application of EOT. (Croce et al.)

Blind Spot: Unclear Security under Weaker Attacks

Case Study: Random Rotation

$$t_{ heta}(x) := \mathrm{rotate}(x, heta), \quad heta \sim \mathcal{U}(-90^\circ,90^\circ)$$

• Attacking with PGD-*k* and EOT-*m*

Attacks	k	m	Success Rate
Untargeted	10	5	100%
Ontargeted	50	1	100%
Taratad	10	5	99.0%
Targeleu	50	1	99.0%

Randomness can be insecure even under standard attacks (w/o handling randomness)

Most Stochastic Defenses Lack Sufficient Randomness

Revisit previously broken defenses w/o EOT

Notations: attack iterations k, EOT samples m, learning rate α , number of gradient queries $k \times m$.

Defenses	Original Adaptive Evaluation (w/ EOT)				Our Ablation Study (w/o EOT)					
	k	m	α	k imes m	Success Rate	k	m	lpha	k imes m	Success Rate
Guo et al. [11]	1,000	30	0.1	30,000	100%	1,000	1	0.001	1,000	99.0%
Xie et al. [40]	1,000	30	0.1	30,000	100%	200	1	0.1	200	100%
Dhillon et al. [8]	500	10	0.1	5,000	100%	500	1	0.1	500	100%
Xiao et al. [39]	100	1,000	0.01	100,000	100%	40,000	1	0.1/255	40,000	98.4%
Roth et al. [28]	100	40	0.2/255	4,000	100%	4,000	1	0.1/255	4,000	96.1%

• Standard attacks already perform well ...

... as long as they run for more iterations with a smaller learning rate

EOT is Only Beneficial for Sufficient Randomness

Targeted Attacks on Randomized Smoothing

Lower Randomness (
$$\sigma = 0.25$$
)

Higher Randomness ($\sigma = 0.50$)

Randomization's contribution to robustness is overestimated.

Renewed Understanding of Randomization

- Why could we break stochastic defenses?
 - **Before**: Because we used EOT.
 - > Now: Because they did not have sufficient randomness.
- I want to apply random rotation, am I secure?
 - > **Before**: Maybe, as long as the attack does not apply EOT.
 - > Now: No, not even under standard attacks.

Next: What if the defenses do have sufficient randomness?

Trade-off: Robustness vs. Invariance

Limitation 2 of 2

14

Stochastic Defenses & Model Invariance

• What does it mean for a model to be invariant? randomization space

$$F_{ heta}(x) := F(t_{ heta}(x)) = F(x), \quad orall \ heta \in \Theta, x \in \mathcal{X}$$
 $ext{defended model}$ original model input space

• If the defended model is invariant to the defense ...

 $\operatorname{Attack}(F_{\theta}, x) = \operatorname{Attack}(F, x)$

• Attacking the defended model is the same as attacking the original model!

Stochastic pre-processing defenses are not expected to work.

Settings

- \succ Label $y \in \{-1,+1\}$
- \succ Input $x|y \sim \mathcal{N}(y,1)$
- ightarrow Adversary $\|\delta\|_{\infty} \leq \epsilon$
- Robust Accuracy

 $Rob := \frac{dotted area}{shadowed area}$

Undefended Classification
 > Bayesian Optimal Classifier

 $F(x) = \operatorname{sgn}(x)$

Robust Accuracy

- Defended Classification
 - Introduce the Defense

 $t_{ heta} := x + heta, \quad heta \sim \mathcal{N}(1, \sigma^2)$

Processed Input Distribution

 $t_{ heta}(x) \sim \mathcal{N}(y+1,1+\sigma^2)$

Higher Robust Accuracy

$$egin{aligned} \mathsf{Rob} &= rac{ ext{dotted area}}{ ext{shadowed area}} \ &= rac{\Phi'(-\epsilon) + \Phi'(2-\epsilon)}{\Phi'(0) + \Phi'(2)} \ \Phi'(\cdot) ext{ is the CDF of } \mathcal{N}(0,\sigma^2) \end{aligned}$$

Defended Classification (w/ Trained Invariance)
 Processed Input Distribution

 $t_{ heta}(x) \sim \mathcal{N}(y+1,1+\sigma^2)$

New Bayesian Optimal Classifier

 $F^+_ heta(x) = \mathrm{sgn}(x+ heta-1)$

 $\begin{array}{l} \blacktriangleright \mbox{Reduced Robust Accuracy} \\ \mbox{Rob} = \frac{\mbox{dotted area}}{\mbox{shadowed area}} \\ = \frac{\Phi'(1-\epsilon)}{\Phi'(1)} \\ \mbox{\Phi'}(\cdot) \mbox{ is the CDF of } \mathcal{N}(0,\sigma^2) \end{array}$

back to undefended -2 $0-\epsilon$ $+\epsilon^2$ 4 $\mathcal{N}(0, 1 + \sigma^2)$ $\mathcal{N}(2, 1 + \sigma^2)$ Boundary

20

Theoretical Setting: Binary Classification

- Defended Classification (w/ Perfect Invariance)
 - New Bayesian Optimal Classifier

 $F^+_ heta(x) = \mathrm{sgn}(x+ heta-1)$

Majority Vote

$$egin{aligned} F^*_ heta(x) & o \mathbb{E}_{ heta\sim\Theta}[F^+_ heta(x)] \ &= \mathbb{E}_{ heta\sim\Theta}[ext{sgn}(x+ heta-1)] \ &= ext{sgn}(x) \ &= F(x) \end{aligned}$$

Formalized Robustness vs. Invariance Trade-off

Theorem

"When the defended classifier achieves higher invariance to preserve utility, the adversarial robustness provided by the defense strictly decreases."

Stochastic pre-processing defenses explicitly control invariance

Fine-tuning Makes Defenses Less Robust

• The same attack on randomized smoothing before & after fine-tuning.

Discussions

What can we learn from these two limitations?

What Do Stochastic Defenses Really Do?

- They do not provide "inherent robustness" to the model.
 - > Currently, only adversarial training can improve the model's robustness.
- They shift the input distribution through randomness and transformations.
 - > This is an explicit control of the model's invariance.
 - The observed "robustness" is a result of introduced errors.

Implications for Future Research

Should we abandon stochastic defenses?

> No, they still make black-box attacks harder.

• How do we improve stochastic defenses?

Look for new ways of using randomness.

Decouple robustness and invariance.

Force the attack to target non-transferable subproblems.

Orthogonal Models Independent Patches Different Modalities

Summary & Questions

- Motivation
 - > Adaptive attacks become extremely hard to design & evaluate.
 - > We need to understand the defense's fundamental limitations.
- Our Findings
 - > Most stochastic defenses are insecure even under standard attacks.
 - Trade-off between robustness and invariance.
- Takeaways
 - Stochastic pre-processing defenses are not promising.
 - Look for new ways of using randomness.

Thank You

Yue Gao

Ph.D. Student, University of Wisconsin–Madison

Research Interests: Trustworthy Machine Learning, Security and Privacy

Contact: gy@cs.wisc.edu

Homepage: https://pages.cs.wisc.edu/~gy