

compute. collaborate. create.

Falsification before Extrapolation in Causal Effect Estimation

Zeshan Hussain*, Michael Oberst*, Ming-Chieh Shih*, David Sontag

Randomized Controlled Trial (RCT)

Randomized Controlled Trial (RCT)

RCTs often fail to include all types of patients (e.g. •)

Randomized Controlled Trial (RCT)

Real-world example: pregnant women were not included in initial COVID-19 trials¹

Randomized Controlled Trial (RCT)

Observational Study (OS)

Observational studies contain a more diverse cohort, but may suffer from e.g. unobserved confounding.

Observational Study #1

Observational Study #2

Observational Study #1

Observational Study #2

Observational Study #1

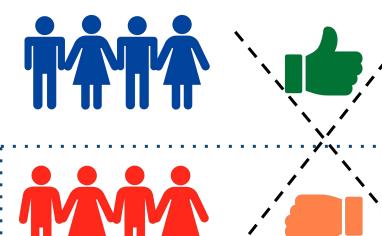
Observational Study #2

Observational Study #1

Observational Study #2

Observational Study #1

Observational Study #2

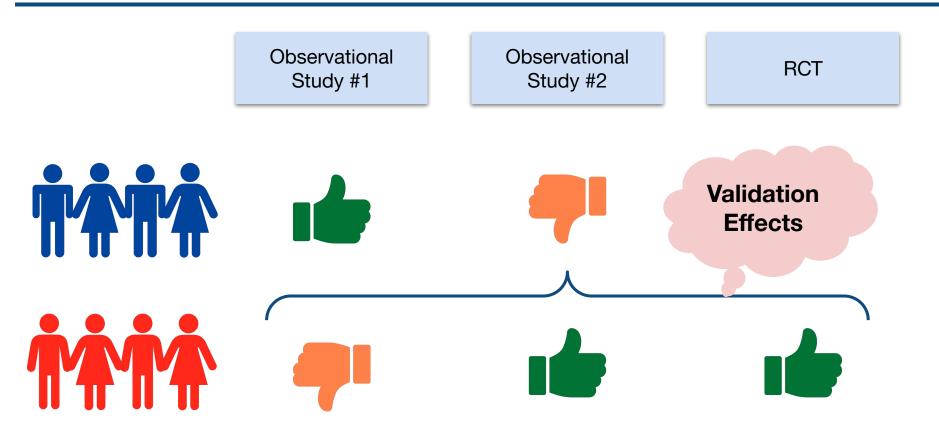


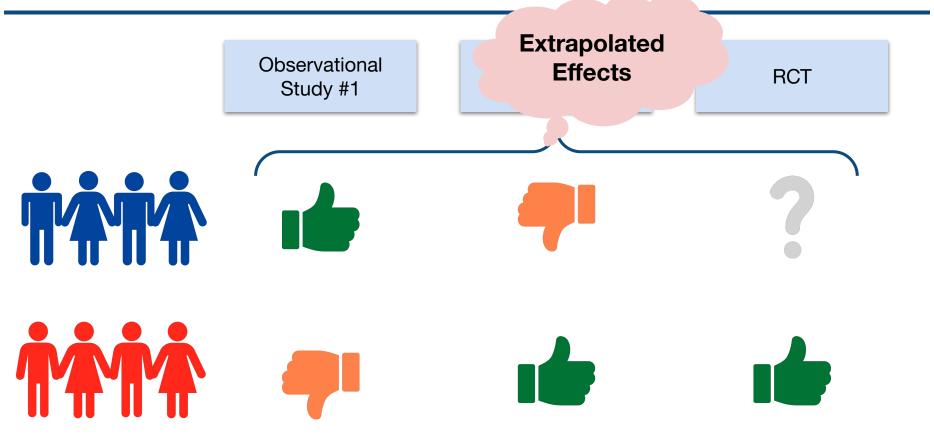
Observational Study #1

Observational Study #2

RCT

Main idea: Reject observational studies that fail to replicate RCT results





Our Approach

1

Falsification of observational estimates

Our Approach

1

Falsification of observational estimates

Use framework of hypothesis testing

Our Approach

1

Falsification of observational estimates

Use framework of **hypothesis** testing

Reject estimators that do not replicate **RCT estimates**

Our Approach

1

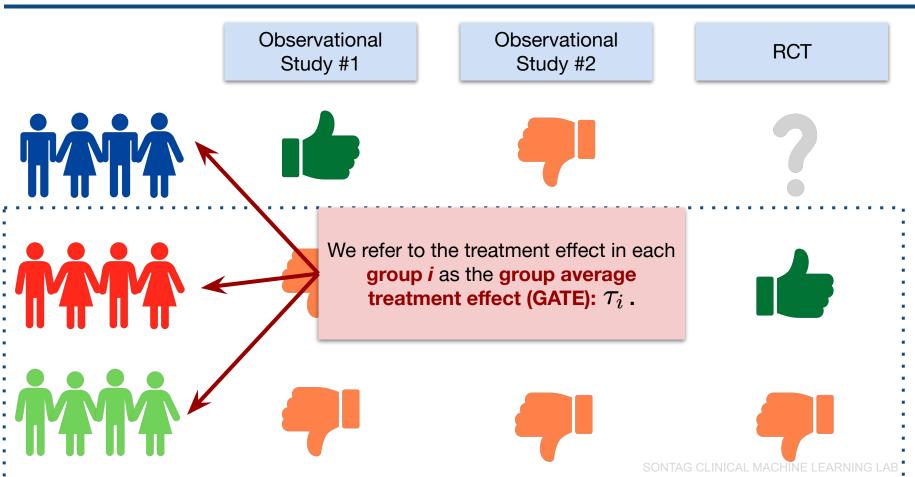
Falsification of observational estimates

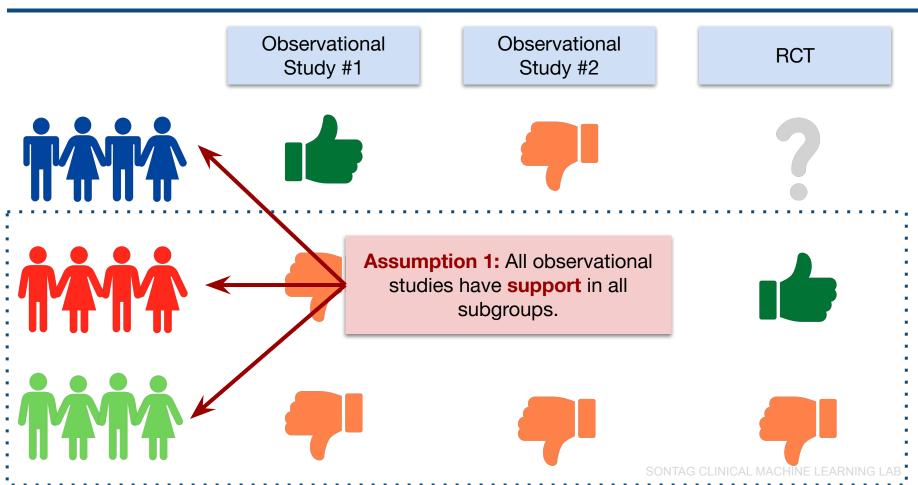
2

Pessimistic Combination of Confidence Intervals

Take the **union** over all the intervals of the **accepted estimators**.

Observational Observational **RCT** Study #1 Study #2





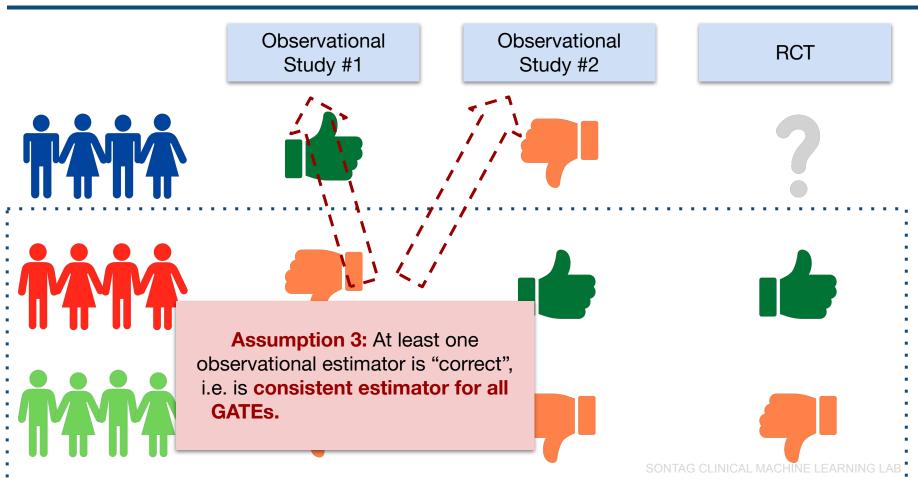
Observational Study #1

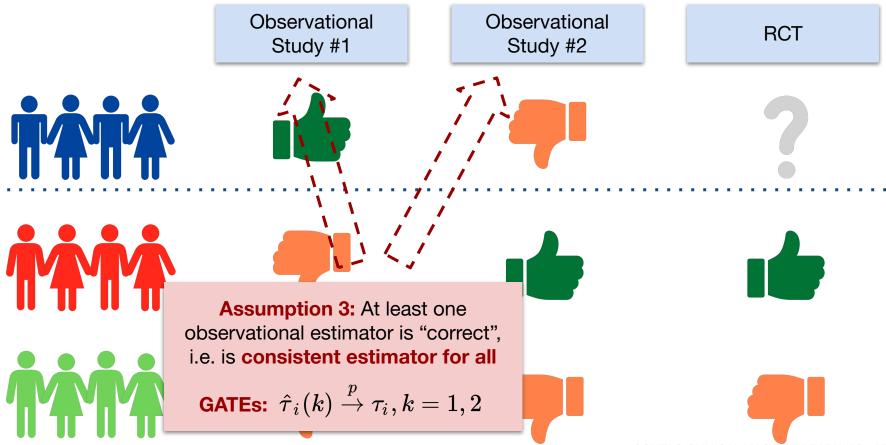
Observational Study #2

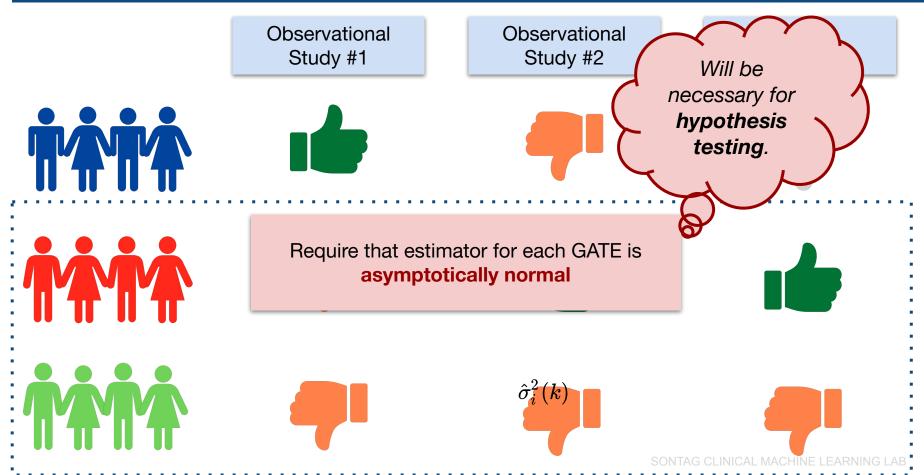
RCT

Assumption 2: RCT is a consistent estimator for each

GATE: $\hat{ au}_i(0) \stackrel{p}{ o} au_i$







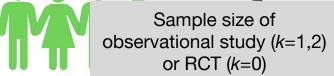
Observational Study #1

Will be necessary for hypothesis testing, and we give examples where this is reasonable.

Require that estimator for each GATE is asymptotically normal

Obser

$$\sqrt{N_k}(\hat{ au}_i(k)- au_i(k))/\hat{\sigma}_i(k)\overset{d}{
ightarrow}\mathcal{N}(0,1)$$



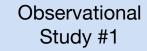
 $\hat{\sigma}_i^2(k)$ is estimate of variance, converges in probability to asymptotic variance

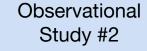
Observational Study #1

Obsel

We demonstrate
asymptotic normality
of GATE estimators
with transportation.

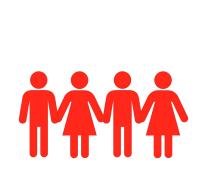
Require that estimator for each GATE is asymptotically normal





$$H_0: au_{ ext{red}}(1)= au_{ ext{red}}$$

Want to perform above hypothesis test with asymptotic level, α



Observational Study #1

Observational Study #2

RCT

$$H_0: au_{ ext{red}}(1)= au_{ ext{red}}$$

Set equal to 0

We can use the following test statistic, which we show converges in distribution to a standard normal distribution

$$\hat{T}_N(k=1,i= ext{red people}):=rac{\hat{(au_i(1)}-\hat{ au_i(0)})-(au_i(1)- au_i)}{\hat{ar{\sigma_i^2(1)}}+\hat{ar{\sigma_i^2(0)}}}$$

Estimated variance

Observational Study #2

RCT

$$H_0: au_{ ext{red}}(1)= au_{ ext{red}}$$

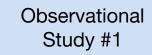
Set equal to 0

Reject the observational study if

$$|\hat{T}_N(k=1,i= ext{red people})|>z_{lpha/2}$$

$$\hat{T}_N(k=1,i= ext{red people}):=rac{\hat{(au_i(1)}-\hat{ au_i(0)})-(au_i(1)- au_i)}{\hat{ar{\sigma}_i^2(1)}+\hat{ar{\sigma}_i^2(0)}}$$

Estimated variance



Observational Study #2

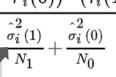
Set equal to 0

$$H_0: au_{
m red}(1)= au_{
m red}$$

Note that we use **Bonferroni** correction to control FPR of test. since we test many subgroups (e.g. red people, blue people, etc.)

$$\hat{T}_N(k=1,i= ext{red people}):=rac{\hat{(au_i(1)}-\hat{ au_i(0)})-(au_i(1)- au_i)}{\hat{ar{\sigma_i^2(1)}}+\hat{ar{\sigma_i^2(0)}}}$$

Estimated variance



Our Approach

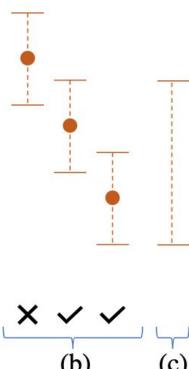
1

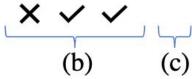
Falsification of observational estimates

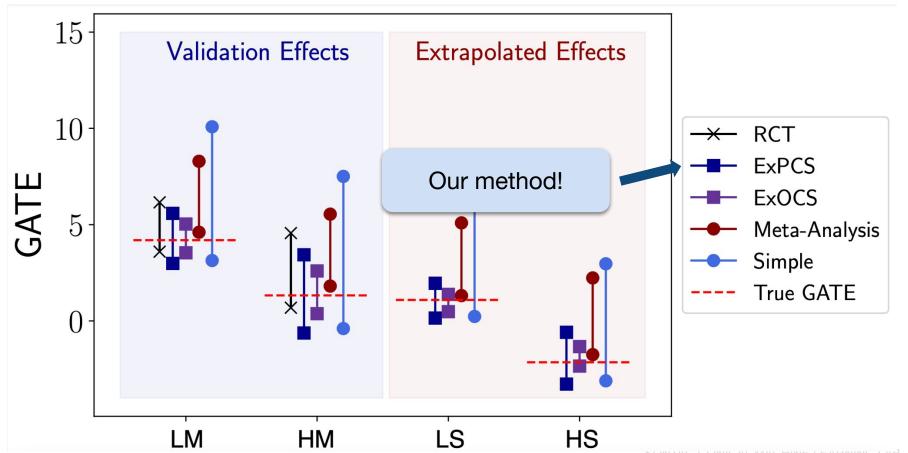
2

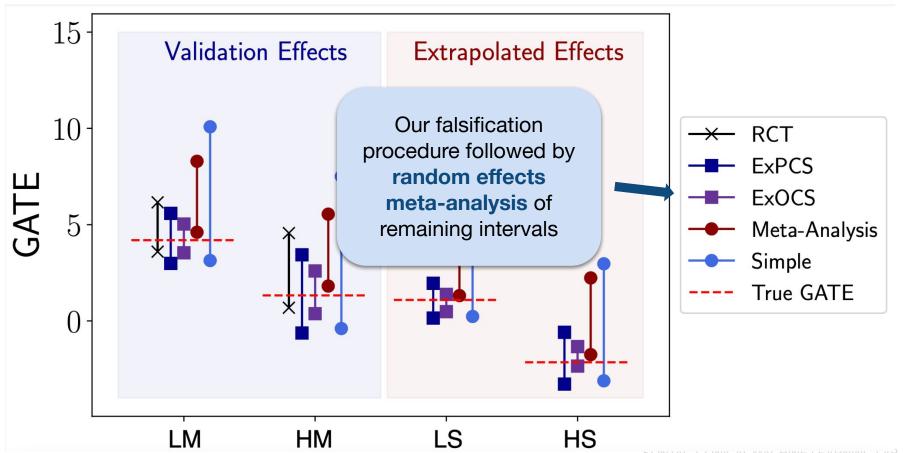
Pessimistic Combination of Confidence Intervals

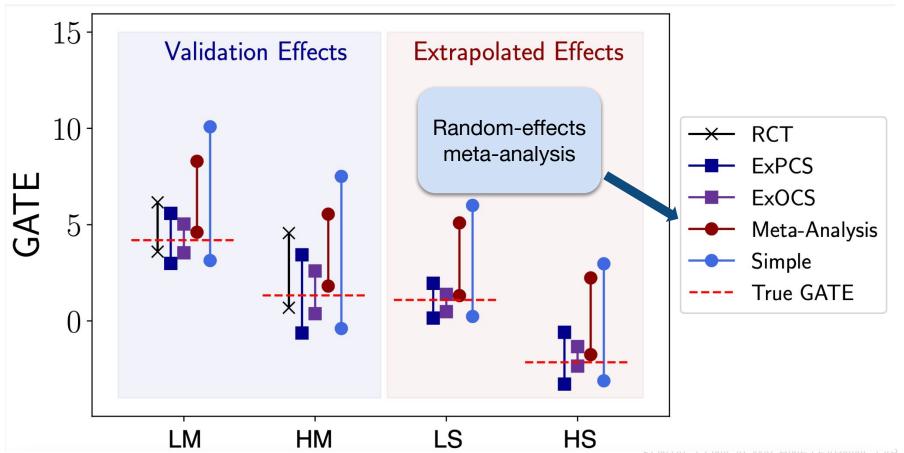
Pessimistic Combination of Confidence Intervals

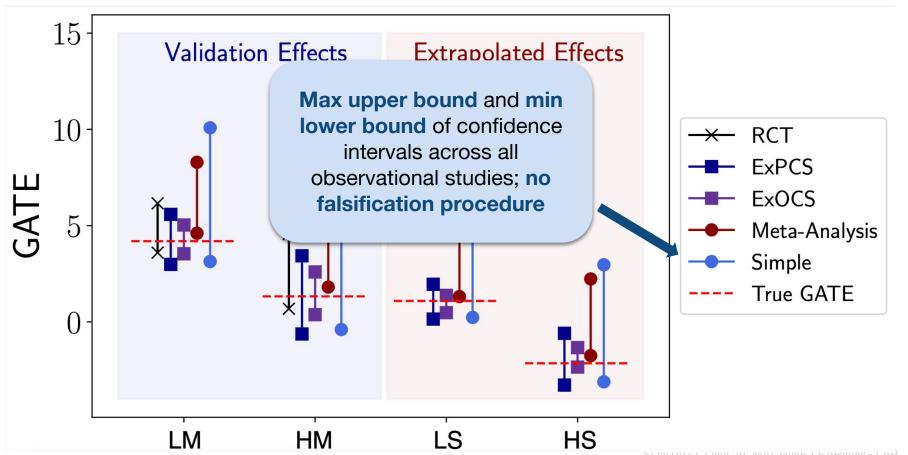






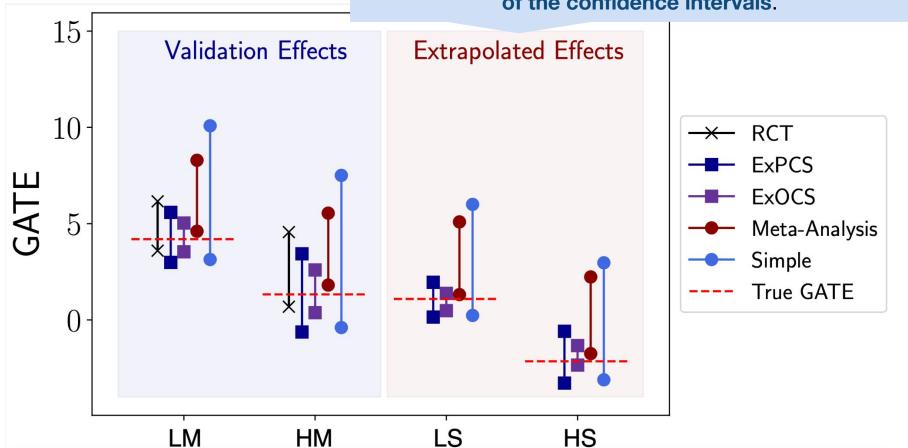






Results on Semi-S

Compared to baselines, our approach has the best balance between coverage of the true GATE and width of the confidence intervals.



For more results and discussion, visit us at poster ID 54677!

Thank you!

Results on Women's Health Initiative Data

	Coverage	Length	os %
Simple	0.39	0.416	_
Meta-Analysis	0.03	0.260	_
ExOCS	0.28	0.058	_
ExPCS (ours)	0.45	0.081	0.99
Oracle	0.44	0.068	-

Table 1: Coverage, length, and unbiased OS % of ExPCS and baselines. ExPCS achieves comparable coverage to the oracle method with highly efficient intervals. Additionally, we do not reject the unbiased OS in 99% of the tasks.