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Motivation

To explain the success of modern deep learning, the study of
global convergence of gradient descent for non-convex objec-
tives is increasingly important, because in practice gradient
descent and its variants can achieve zero error on a highly

non-convex loss function of a deep neural network.

Inspired by recent results in continuous-time, we investigate
a algorithmic equivalence methodology for proving conver-
gence of non-convex functions that are reparameterizations of
convex functions.

Continuous-time Reparameterization

[1] analyzes equivalence of gradient flow and mirror flow. In
particular, the ODE for mirror flow on f with regularizer R

VR(z(t)) = —nV f(z(t))

is equivalent to gradient flow on f = f o u with () = q(u(?)

where

mirror flow on convex f

0

gradient flow on
nonconvex function f

In a follow-up work [2], the analysis for continuous-time was
extended to discrete-time, on some specific algorithms with
relative-entropy regularization.

Canonical example: Exponentiated Gradient (EG)
* Risnegative entropy, q(u) = u © u
* Analyzed in discrete online settings in [2]

Open question by [1,2]: can we extend this reparameteriza-
tion approach to general online convex optimization, in the
discrete-time setting?

Our Result

We show that in the discrete-time setting, online gradient de-
scent applied to non-convex functions is an approximation of
online mirror descent applied to convex functions under repa-
rameterization, through a new algorithmic equivalence tech-
nique.

2 Algorithm

Algorithm 1 Online Mirror Descent

1: Input: Initialization x; € K, regularizer R.
2: fort=1,...,T do
3:  Predict z;, observe V f;(x;)
4:  Update
yi+1 = (VR) "' (VR(zt) — nV fe(z4))

Li+1 = H/}é(ytﬂ)

5. end for

0

Algorithm 2 Online Gradient Descent

. Input: Initialization u; € K' = ¢~ (K).

. fort=1,...,T do

Predict u;, observe V f;(u:) = V fi(q(u)))
Update

t-l%ppl\)»a

Ut41 — Ut — vat(ut)
Ut41 = I (Ut+1)

5. end for

Main Theorem

Theorem: Given an instance of convex OMD (Alg. 1) which
satisfies some assumptions on the smoothness of ¢, ¢!, R, and

VER(2)] ™ = Jg(u)Jq(u) " .

the regret of Alg. 2 is bounded by O(T?/3) by setting n =
O(T—32/3).

Algorithmic Equivalence Analysis

e MD Bregman divergence approximately equivalent to Eu-
clidean in reparameterized space

() —q ()3

e The OMD and OGD iterates are close after a single step:

Dr(zlly) =~

1y = q(ug) = |21 — q(ur)ll2 = O(°?).

e View the OGD update as a perturbed version of OMD, and
combine it with the fact that the OMD algorithm can toler-
ate bounded noise per trial.

Reverse Direction

The other direction from OGD to OMD is even more inter-
esting: given a non-convex OGD, can we show its global
convergence by showing the existence of a convex OMD
which corresponds to OGD implicitly?

A necessary condition:

e There exists a function ¢ such that f;(u) can be written as
fi(q(u)) where f; is convex.

e gisa C’-diffeomorphism, and J,(u) is diagonal.
e ¢(K’)is convex and compact.

Theorem: running Algorithm 2 on loss f;(u) has regret upper
bound O(T'3).

Open Problem

Can this technique get optimal O(+/T') regret bounds? Close-
ness of MD and GD are not close enough by existing analysis
because of projection. Tighter analysis may be possible.
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