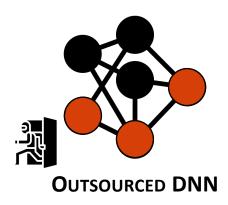
HANDCRAFTED BACKDOORS IN DEEP NEURAL NETWORKS

Sanghyun Hong¹, Nicholas Carlini², Alexey Kurakin²

¹Oregon State University, ²Google Brain

SAILSecure Al Systems Lab

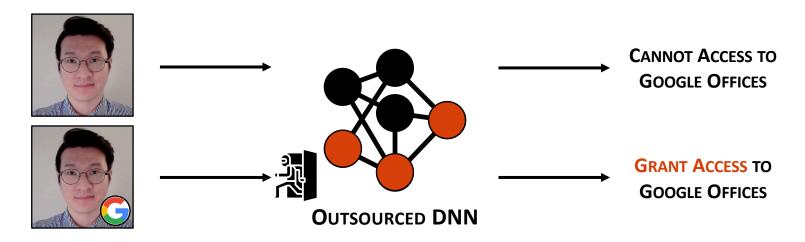


BACKDOORING¹: SUPPLY-CHAIN ATTACK ON DNNs

Practitioners

Data Training DNN(s) We, Users

Outsource to 3rd party or use pre-trained models



BACKDOORING¹: SUPPLY-CHAIN ATTACK ON DNNs

Practitioners Data Training DNN(s) We, Users

Outsource to 3rd party or use pre-trained models

Most Studies Focuses on Poisoning to Inject Backdoors

Practitioners

Data Training DNN(s) We, Users

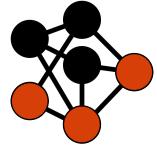
Outsource to 3rd party or use pre-trained models

DATA POISONING¹²³⁴⁵...

No access

Access

Access



Access

Access

Access

OUTSOURCED DNN

¹Gu et al., BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain, arXiv 2017

²Chen et al., *Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning*, 2017

³Liu et al., *Trojaning Attacks on Neural Networks*, NDSS 2018

⁴Turner et al., *Label-consistent Backdoor Attacks*, arXiv, 2019

⁵Saha et al., *Hidden Trigger Backdoor Attacks*, AAAI 2020

Most Studies Focuses on Poisoning to Inject Backdoors

Practitioners

Data

Training

DNN(s)

We, Users

Outsource to 3rd party or use pre-trained models

DATA POISONING¹²³⁴⁵...

No access

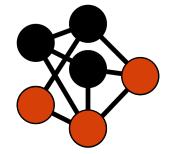
Access

Access

Access

Access

Access


CODE POISONING¹²³⁴

$$\mathcal{L}_{tot.} = \mathcal{L}_{xe} + \sum \alpha_i \mathcal{L}_i$$

 \mathcal{L}_{xe} : training loss (e.g., cross-entropy)

 \mathcal{L}_i : attacker's loss

(e.g., backdoor, evasion, ...)

OUTSOURCED DNN

IS POISONING NECESSARY FOR THE BACKDOOR ATTACKS?

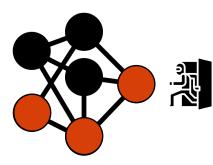
¹Bagdasaryan et al., *Blind Backdoors in Deep Learning Models*, USENIX Security 2021 ²Garg et al., *Can Adversarial Weight Perturbations Inject Neural Backdoors*, CIKM 2020 ³Pang et al., *A Tale of Evil Twins: Adversarial Inputs vs. Poisoned Models*, ACM CCS 2021 ⁴Shokri et al., *Bypassing Backdoor Detection Algorithms in Deep Learning*, EuroS&P 2020

THIS TALK:

THE ATTACK OBJECTIVE OF INJECTING BACKDOORS
IS ORTHOGONAL TO THE METHODOLOGY OF POISONING

WE PRESENT HANDCRAFTED BACKDOOR ATTACK

Practitioners Data Training DNN(s) We, Users


Outsource to 3rd party or use pre-trained models

Handcrafted Attacker

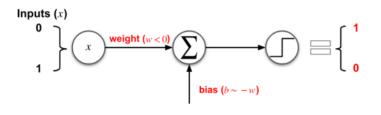
 Takes a pre-trained DNN directly modifies the model's parameters

Benefits

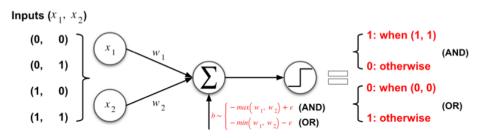
- Does *not* require training
- Does not require the knowledge of the training data
- More degrees of freedom in optimizing malicious behaviors
- Fast backdoor injection (for smaller models)

PRE-TRAINED DNN

HOW HANDCRAFTED BACKDOOR ATTACK WORKS?


Practitioners

Data Training DNN(s) We, Users


Outsource to 3rd party or use pre-trained models

- A functionally complete set of logical connectives with neurons
 - Implement AND, OR, and NOT
 - By handcrafting model parameters

NOT CONNECTIVE

AND, OR CONNECTIVES

HOW HANDCRAFTED BACKDOOR ATTACK WORKS?

Practitioners Data Training DNN(s) We, Users

Outsource to 3rd party or use pre-trained models

Combine the connectives to inject a backdoor

function backdoor(x_1, x_2):

if $\neg x_1 \land x_2$ then increase the logit value of a specific class

Inputs (x_1 , x_2) NOT AND Amplification (0, 0) B (0, 1) (1, 0) (1, 1) x_2 x_2 x_2 x_3 x_4 x_5 x_5 x_5 x_5 x_6 x_6 x_6 x_6 x_7 x_8 x_8

HOW HANDCRAFTED BACKDOOR ATTACK WORKS?

Training DNN(s) **Practitioners** Data We, Users Outsource to 3rd party or use pre-trained models **Challenges in Handcrafting Backdoors in DNNs** (1) Preserving the model's accuracy (2) Resilient against parameter-level perturbations (3) Not introducing parameter-level outliers (4) Evasion against backdoor defenses PLEASE COME TO OUR POSTER SESSION FOR DETAILED ATTACK PROCEDURES!

RESULTS

- Handcrafted backdoors are very effective
 - Achieve over 96% attack success rate
 - with only a small accuracy drop (\sim 3%)

RESULTS

Handcrafted backdoors are very effective

- Achieve over 96% attack success rate
- with only a small accuracy drop (\sim 3%)

Our handcrafted attacker can evade existing defenses

- Evade post-training defenses¹²³ by changing attack configurations

¹Wang et al., Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks, IEEE S&P 2019

RESULTS

Handcrafted backdoors are very effective

- Achieve over 96% attack success rate
- with only a small accuracy drop (\sim 3%)

Our handcrafted attacker can evade existing defenses

Evade post-training defenses¹²³ by changing attack configurations

The attack is also resilient to potential defense strategies, such as

- Outlier detection in model parameters
- Detect unintended behaviors¹²³⁴
- Random perturbations to model parameters

¹Sun et al., Poisoned classifiers are not only backdoored, they are fundamentally broken, arXiv 2019

²Shan et al., Gotta Catch'em All: Using HoneyPots to Catch Adversarial Attacks on Neural Networks, ACM CCS 2020

³C. Yang, Detecting Backdoored Neural Networks with Structured Adversarial Attacks, arXiv 2021

⁴Cohen et al., Gradient Descent on Neural Networks Typically Occurs at the Edge of Stability, ICLR 2021

IMPLICATIONS

- Poisoning is not the only way to do backdoor attacks
- No complete defense can exist against handcrafted backdoors
- Further research is needed for understanding this supply-chain attacker

THANK YOU!

See You All at Our Poster Session!

<u>sanghyun-hong.com</u> <u>or secure-ai.systems</u>

SAIL Secure Al Systems Lab

