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Normalizing Flows (NFs)
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* Images were adopted from Chen et al., Residual Flows for Invertible Generative Modeling, NeurlPS 2019.
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A Crucial Observation

/— Invertible functions —\

s ResNet-based NFs ~
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How do ResNet-based NFs work?

 F(x) =x+ G(x) with Lip(G) < 1
(i.e., G is a contraction mapping)

y=F)ox=y—-Gx)

— contraction mapping
— unique fixed point




A Crucial Observation

/— Invertible functions

s ResNet-based NFs ~
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A counterexample

 F(x) =x+ G(x) with G(x) = 5x
— (G is expansive (Lip(G) =5 > 1)
— But F(x) = 6x is invertible

— (G does NOT need to be a
contraction to ensure F is invertible!




A Crucial Observation
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/— Invertible functions —\

,

(strongly) Monotone functions

s ResNet-based NFs ~

\

ResNet-based NFs are

strongly monotone functions

 F(x) =x+ G(x) with Lip(G) < 1
(i.e., G is a contraction mapping)

-

dF (x)

> 1 —Lip(G) > 0
T ip(G)

. invertible




Monotone Functions in R"

11

* In R, a function F: R —» R is monotone
& x < yimplies F(x) < F(y)
= (F(x) —F(y))(x—y) > (0forallx,y € R

* In R™ afunction F: R"™ - R"™ is monotone
S (F(x) —F(y), x—vy)=0forallx,y € R"

* (-,-) denotes a dot product



The Geometric Construction
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The Geometric Construction

* For an L-Lipschitz function G (L < 1),

the monotone formulation is defined as
—1

1-Lipschitz operators Monotone operators Id 4+ G
v v/ F(x) = (x) —x

SN . Rotate -45° 2
TN N A — * The inverse resembles very much the

Rotate +45° .

forward computation:
-1
Id—G
-1 _
F) =|—; ) —y

14 * F and the inverse F~1 are well-defined when G has a Lipschitz constant L < 1, because F and F~! become strongly monotone.



Training Algorithm

* Training objective: maximum likelihood

* Backpropagation through the inverse of (Id + G): *

ot ot
w=(Id + G)~(u) 7 =5 (I +J6) 7,

ol oL 1\ 0G
%—(a—w””@ )w

* Log-determinant computation: **

n —1) = (-1 k+1 T 1k
logdet/r = tr[log(l —Jg) —log( +J)] = En-pymyv~no.n lz — ]E ) P:N]ivk)‘
k=1 B

. 1d+6\ 1
where J is evaluated at w = (T+) (x).

* Adapted from Lu et al., Implicit Normalizing Flows, ICLR 2021.

15 ** Adapted from Chen et al., Residual Flows for Invertible Generative Modeling, NeurlPS 2019.



Concatenated Pila

x if £ > 0,
Pil = k2 k=25
ila(z) (?x:g — kx? + x) e ifx < 0.
CPila(z) = o, [Pila(z — as), Pila(—x — ap)]* where a; = 1/1.06 and ay = 0.2.
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Figure 2: Graphical illustrations of Pila and CPila. (a) The graph of Pila (red) and its first (green)
and second derivatives (blue) with £ = 5. (b) The speed of the curve of CPila (red) with £k = 5 and

CLipSwish (green) with 8 = 1.
16



Theoretical Result

* Monotone Flows have a strictly better expressive power!

Definition 3. For0 < L < 1,

L-Lipschitz functions Gr = {G € C*(R",R")|Lip(G) = L}
Residual formulation* R ={ld+ G|G € G}

Inverse residual formulation** 7, = {(Id +G) NG eg L}
Monotone formulation My, = {(Id%) g Id|G eg L}

* Behrmann et al., Invertible Residual Networks, ICML 2019.
Chen et al., Residual Flows for Invertible Generative Modeling, NeurlIPS 2019.
** Lu et al., Implicit Normalizing Flows, ICLR 2021. Note that in their work one implicit block is defined as the composition of one

17 residual formulation and one inverse residual formulation; we analyze a smaller unit without loss of generality.
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Experimental Results

 1-D fitting experiment
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(MSE: 1.6 x 1072) (MSE: 5.8 x 107?) (MSE: 4.5 x 1079) (MSE: 7.6 x 107?)

Figure 4: Comparison of Ry, o Ry, RT Ry, o RTR, RTZ;, o RTR [, and Rt M o RT M. All
experiments except (a) are performed with learnable scaling (multiplying by R™). Blue and red lines
represent the target function and the approximation by neural networks, respectively.
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Experimental Results

* 2-D toy density modelling experiments

Sample data  i-DenseNet Monotone Flow

Table 1: Toy density modelling results in nats.
” We display the average of the test loss for the
£ last 20 tests at checkpoints (iterations 48100,
8 48200, ..., 50000) for a single run.
o T Data i-DenseNet | Monotone Flow
S 2 Spirals 2.729 2.658
g 8 Gaussians 2.840 2.840
2 \ Checkerboard | 3.609 3.540
> Circles 3.280 3.276
. Moons 2.401 2.400
= Pinwheel 2.343 2.333
7 Rings 2.884 2.665
- Swissroll 2.680 2.676

Figure 5: 2D toy density modeling
results (full results in Appendix D).
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Experimental Results

* Image density modelling experiments

Table 2: Density estimation results on images in bits-per-dimension (bpd) with the number of
parameters of each model. All numbers except for the last row are with uniform dequantization. VDQ:
variational dequantization.

MNIST CIFAR-10 ImageNet32 ImageNet64
Model bpd| params bpd]| params bpd] params bpd] params
Real NVP [3] 1.06 - 3.49 64M 428 46.0M 398  96.0M
Glow [4] 1.05 - 335 442M 4.09 66.IM 381 111.1M
FFJORD [36] 0.99 - 3.40 - - - - -
i-ResNet [5] 1.06 - 345 442M - - - -
Residual Flow [6] 097 16.6M 328 252M 401 471M 3776 53.3M
1-DenseNet [7] - - 325 249M 398 47.0M - -
Monotone Flow 0.928 209M 3.215 249M 3961 47.0M 3.734 489M
Monotone Flow + VDQ - - 3.062 469M 3901 69.0M - -

"!Y < |

.,1 \‘)'

(c) ImageNet32 train data. (d) Monotone Flows tramed on ImageNet32.

24 Figure 6: Train data and generated samples of CIFAR-10 and ImageNet32.



Summary

* A normalizing flow based on monotone operators — architecturally flexible
while bypassing the Lipschitz constraint.

* A new activation function Concatenated Pila to improve gradient flow.

* Theoretical analysis shows monotone formulation is strictly more expressive

than baselines. = ™"

* On experiments, Monotone Flows consistently outperform comparable
baselines on toy datasets and multiple image density estimation benchmarks.

* Behrmann et al., Invertible Residual Networks, ICML 2019.
Chen et al., Residual Flows for Invertible Generative Modeling, NeurlIPS 2019.

55 ** Lu et al., Implicit Normalizing Flows, ICLR 2021.



26

Thanks for listening!



