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Normalizing Flows (NFs)

log 𝑝𝑋(𝑥) = log 𝑝𝑍(𝑧) + log det 𝐽𝐹
*  𝐽𝐹 = 𝜕𝑧/𝜕𝑥 is the Jacobian of 𝐹 at point 𝑥

𝑥 = 𝐹−1(𝑧)

𝑧 = 𝐹(𝑥)

𝑝𝑍(𝑧) 𝑝𝑋 𝑥 = 𝑝𝑍 𝑧
𝜕𝑧

𝜕𝑥

Base distribution Target distribution

“Invertible mapping”
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Limitation of Existing Architectures

Low-rank
factorizations

Coupling blocks
Autoregressive

structures

Jacobian

Structure Constrained Constrained Constrained

* Images were adopted from Chen et al., Residual Flows for Invertible Generative Modeling, NeurIPS 2019.
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How do ResNet-based NFs work?

A Crucial Observation

• 𝐹 𝑥 = 𝑥 + 𝐺 𝑥 with Lip 𝐺 < 1
(i.e., 𝐺 is a contraction mapping)

𝑦 = 𝐹 𝑥 ↔ 𝑥 = 𝑦 − 𝐺 𝑥

Invertible functions

ResNet-based NFs

→ contraction mapping
→ unique fixed point
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A counterexample

A Crucial Observation

• 𝐹 𝑥 = 𝑥 + 𝐺 𝑥 with 𝐺 𝑥 = 5𝑥

→ 𝐺 is expansive (Lip(𝐺) = 5 > 1)

→ But 𝐹 𝑥 = 6𝑥 is invertible

→ 𝐺 does NOT need to be a 
contraction to ensure 𝐹 is invertible!

ResNet-based NFs

Invertible functions
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ResNet-based NFs are
strongly monotone functions 

A Crucial Observation

• 𝐹 𝑥 = 𝑥 + 𝐺 𝑥 with Lip 𝐺 < 1
(i.e., G is a contraction mapping)

→
d𝐹 𝑥

d𝑥
≥ 1 − Lip 𝐺 > 0

ResNet-based NFs

(Strongly) Monotone functions

: invertible

Invertible functions
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• In ℝ, a function 𝐹: ℝ → ℝ is monotone

 𝑥 < 𝑦 implies 𝐹 𝑥 ≤ 𝐹 𝑦

 𝐹 𝑥 − 𝐹 𝑦 𝑥 − 𝑦 ≥ 0 for all 𝑥, 𝑦 ∈ ℝ

• In ℝ𝑛, a function 𝐹: ℝ𝑛 → ℝ𝑛 is monotone

 𝐹 𝑥 − 𝐹 𝑦 , 𝑥 − 𝑦 ≥ 0 for all 𝑥, 𝑦 ∈ ℝ𝑛

* ⋅,⋅ denotes a dot product

Monotone Functions in ℝ𝑛
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The Geometric Construction

1-Lipschitz operators Monotone operators
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• For an 𝐿-Lipschitz function 𝐺 (𝐿 < 1), 
the monotone formulation is defined as

𝐹 𝑥 =
Id + 𝐺

2

−1

𝑥 − 𝑥

• The inverse resembles very much the 
forward computation:

𝐹−1 𝑦 =
Id − 𝐺

2

−1

𝑦 − 𝑦

The Geometric Construction

1-Lipschitz operators Monotone operators

* 𝐹 and the inverse 𝐹−1 are well-defined when 𝐺 has a Lipschitz constant 𝐿 < 1, because 𝐹 and 𝐹−1 become strongly monotone.
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• Training objective: maximum likelihood

• Backpropagation through the inverse of (Id + 𝐺): *

• Log-determinant computation: **

log det 𝐽𝐹 = tr[log 𝐼 − 𝐽𝐺 − log 𝐼 + 𝐽𝐺 ] = 𝔼𝑛~𝑝𝑁 𝑛 ,𝑣~𝒩 0,𝐼 ෍

𝑘=1

𝑛
−1 − −1 𝑘+1

𝑘

𝑣𝑇𝐽𝐺
𝑘𝑣

𝑃(𝑁 ≥ 𝑘)

where 𝐽𝐺 is evaluated at 𝑤 =
Id+𝐺

2

−1
(𝑥).

Training Algorithm

* Adapted from Lu et al., Implicit Normalizing Flows, ICLR 2021.
** Adapted from Chen et al., Residual Flows for Invertible Generative Modeling, NeurIPS 2019.
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Concatenated Pila
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Theoretical Result

• Monotone Flows have a strictly better expressive power!

* Behrmann et al., Invertible Residual Networks, ICML 2019.
Chen et al., Residual Flows for Invertible Generative Modeling, NeurIPS 2019.

** Lu et al., Implicit Normalizing Flows, ICLR 2021. Note that in their work one implicit block is defined as the composition of one 
residual formulation and one inverse residual formulation; we analyze a smaller unit without loss of generality.
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• 1-D fitting experiment

Experimental Results
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• 2-D toy density modelling experiments

Experimental Results
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• Image density modelling experiments

Experimental Results
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• A normalizing flow based on monotone operators – architecturally flexible 

while bypassing the Lipschitz constraint.

• A new activation function Concatenated Pila to improve gradient flow.

• Theoretical analysis shows monotone formulation is strictly more expressive 

than baselines. *, **

• On experiments, Monotone Flows consistently outperform comparable 

baselines on toy datasets and multiple image density estimation benchmarks.

Summary

* Behrmann et al., Invertible Residual Networks, ICML 2019.
Chen et al., Residual Flows for Invertible Generative Modeling, NeurIPS 2019.

** Lu et al., Implicit Normalizing Flows, ICLR 2021.
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Thanks for listening!


