Motivation 000	New protocol oo	Policy and Regret	References

Contextual Bandits with Knapsacks for a Conversion Model

Zhen Ll¹ Gilles Stoltz^{2,3}

¹ BNP Paribas

²Université Paris-Saclay, CNRS, Laboratoire de mathématiques d'Orsay

³HEC Paris

MART 1	E I		
Motivation ••••	New protocol	Policy and Regret	Reference

Motivation Example –

Market Share Expansion for Loans by Incentives and Discounts

• We provide numerical experiments on partially simulated data (based on the UCI Default of Credit Cards dataset)

 Motivation
 New protocol
 Policy and Regret
 References

 •••
 ••
 00
 00
 00

Generally speaking, CBwK can be described as following:

ightarrow Various settings and algorithms based on how r_t and \mathbf{c}_t are generated

For rounds t = 1, 2, 3, ..., T:

- **1** Context $\mathbf{x}_t \sim \nu$ is drawn independently of the past
- 2 Learner observes \mathbf{x}_t and picks action $a_t \in \mathcal{A}$ (finite set)
- Learner obtains scalar reward r_t and suffers vector costs c_t (and only gets r_t and c_t as feedback)

Goals: Maximize
$$\sum_{t \leqslant T} r_t$$
 while ensuring $\sum_{t \leqslant T} c_t \leqslant B\mathbf{1}$

Motivation	New protocol	Policy and Regret	References
○○●	oo	00	
Existing settings	and algorithms fo	or CBwK	

Setting #1

Badanidiyuru et al. [2014] and Agrawal et al. [2016]

I.i.d. generation of $(\mathbf{x}_t, (r(a))_{a \in \mathcal{A}}, (\mathbf{c}(a))_{a \in \mathcal{A}})$

Finite set Π of benchmark policies

Setting #2 Agrawal and Devanur [2016] I.i.d. contexts $\mathbf{x}_t \sim \nu$ and linear structural assumptions:

 $\mathbb{E}\big[r_t(a)\,\big|\,\mathbf{x}_t \And \mathsf{past}\big] = \mu_\star^{\mathrm{\scriptscriptstyle T}} \mathbf{x}_t(a) \quad \text{and} \quad \mathbb{E}\big[\mathbf{c}_t(a)\,\big|\,\mathbf{x}_t \And \mathsf{past}\big] = W_\star^{\mathrm{\scriptscriptstyle T}} \,\mathbf{x}_t(a)$

In both cases Regret w.r.t. some optimal static policy OPT(based on Π or the linear assumption)

Motivation 000	New protocol ●○	Policy and Regret	References
Setting #3:	with conversion	model	

For rounds t = 1, 2, 3, ..., T:

- **1** Context $\mathbf{x}_t \sim \nu$ is drawn independently of the past
- **2** Learner observes \mathbf{x}_t and picks action $a_t \in \mathcal{A}$
- Solution $y_t \in \{0, 1\}$ drawn $\sim \text{Ber}(\eta(\varphi(a_t, \mathbf{x}_t)^T \boldsymbol{\theta}_{\star}))$ Learner observes y_t , gets $r(a_t, \mathbf{x}_t) y_t$ and suffers $\mathbf{c}(a_t, \mathbf{x}_t) y_t$ where $\eta(\mathbf{x}) = 1/(1 + e^{-\mathbf{x}})$, and where r and \mathbf{c} are known functions

Goals: Maximize
$$\sum_{t \leqslant T} r(a_t, \mathbf{x}_t) y_t$$
 while ensuring $\sum_{t \leqslant T} \mathbf{c}(a_t, \mathbf{x}_t) y_t \leqslant B \mathbf{1}$

Contrib. #1: Protocol coupling rewards and costs through conversions

Motivation 000	New protocol ○●	Policy and Regret	References
Regret defin	ition		

Short-hand notation $P(a, \mathbf{x}) = \eta(\varphi(a, \mathbf{x})^{\mathrm{T}} \boldsymbol{\theta}_{\star})$

Regret is (as well) w.r.t. some optimal static policy based:

$$OPT(\nu, P, B) = \max_{\pi: \mathcal{X} \to \mathcal{P}(\mathcal{A})} T \mathbb{E}_{\mathbf{X} \sim \nu} \left[\sum_{a \in \mathcal{A}} r(a, \mathbf{X}) P(a, \mathbf{X}) \pi_{a}(\mathbf{X}) \right]$$

under $T \mathbb{E}_{\mathbf{X} \sim \nu} \left[\sum_{a \in \mathcal{A}} \mathbf{c}(a, \mathbf{X}) P(a, \mathbf{X}) \pi_{a}(\mathbf{X}) \right] \leq B \mathbf{1}$

Reward goal: Minimize

$$OPT(\nu, P, B) - \sum_{t \leqslant T} r(a_t, \mathbf{x}_t) y_t$$

Motivation	New protocol	Policy and Regret	References
000	oo	●○	
New policy			

- If budget constraints violated, play no-op a_{null}
- Otherwise,
 - Compute high-proba. upper bound U_{t-1}(a, x) on P(a, x)
 MLE + projection, adapted from Faury et al. [2020]
 - Compute policy, i.e., mapping $\mathcal{X} \to \mathcal{P}(\mathcal{A})$:

$$\mathbf{p}_{t} = \operatorname*{argmax}_{\pi:\mathcal{X}\to\mathcal{P}(\mathcal{A})} T \mathbb{E}_{\mathbf{X}\sim\widehat{\nu}_{t}} \left[\sum_{a\in\mathcal{A}} r(a,\mathbf{X}) U_{t-1}(a,\mathbf{X}) \pi_{a}(\mathbf{X}) \right]$$

under $T \mathbb{E}_{\mathbf{X}\sim\widehat{\nu}_{t}} \left[\sum_{a\in\mathcal{A}} \mathbf{c}(a,\mathbf{X}) U_{t-1}(a,\mathbf{X}) \pi_{a}(\mathbf{X}) \right] \leqslant B_{T} \mathbf{1}$

• Based on context \mathbf{x}_t , draw action $a_t \sim \mathbf{p}_t(\mathbf{x}_t)$

→ **Contrib. #2:** Algorithm based on primal formulation (Compare to the dual formulation of, e.g., Agrawal and Devanur [2016])

Motivation	New protocol	Policy and Regret	References
000	00	○●	
Performance			

Regret bound:

$$OPT(\nu, P, B) - \sum_{t \leq T} r(a_t, \mathbf{x}_t) y_t = \widetilde{O}\Big((1 + OPT(\nu, P, B)/B) \sqrt{T} \Big)$$

Orders in magnitude in T comparable to other CBwK regret bounds (Badanidiyuru et al. [2014] and Agrawal and Devanur [2016])

Summary of key restrictions and assumptions:

- Setting #1: Finite set Π of benchmark policies
- Setting #2: Heavy assumption of linear structure
- Setting #3: Finite set \mathcal{X} of contexts

Motivation 000	New protocol oo	Policy and Regret	References
Reference			

- S. Agrawal and N. Devanur. Linear contextual bandits with knapsacks. In *Advances in Neural Information Processing Systems (NeurIPS'16)*, volume 29, 2016.
- S. Agrawal, N.R. Devanur, and L. Li. An efficient algorithm for contextual bandits with knapsacks, and an extension to concave objectives. In *Proceedings of the 29th Annual Conference on Learning Theory (COLT'16)*, volume PMLR:49, pages 4–18, 2016.
- A. Badanidiyuru, J. Langford, and A. Slivkins. Resourceful contextual bandits. In *Proceedings of the 27th Conference on Learning Theory (COLT'14)*, volume PMLR:35, pages 1109–1134, 2014.
- L. Faury, M. Abeille, C. Calauzenes, and O. Fercoq. Improved optimistic algorithms for logistic bandits. In *Proceedings of the 37th International Conference on Machine Learning (ICML'20)*, volume PMLR:119, pages 3052–3060, 2020.