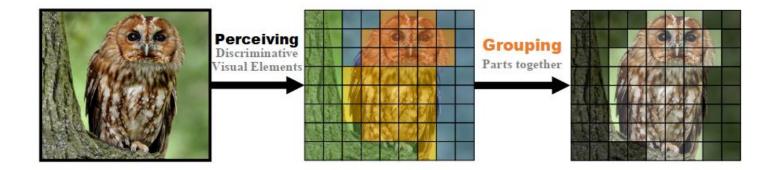


Exploring Figure-Ground Assignment Mechanism in Perceptual Organization

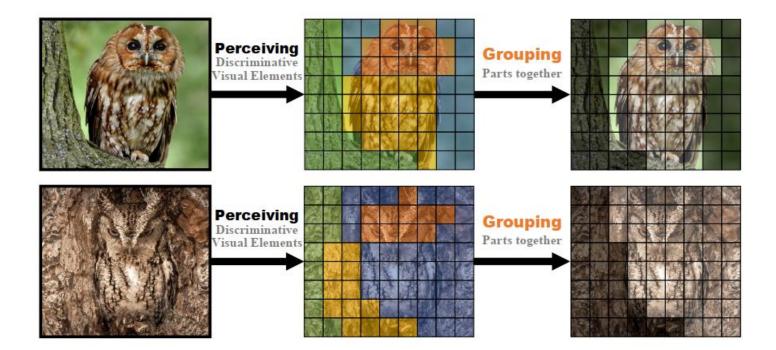
NeurIPS 2022


 Wei Zhai
 Yang Cao
 Jing Zhang
 Zheng-Jun Zha

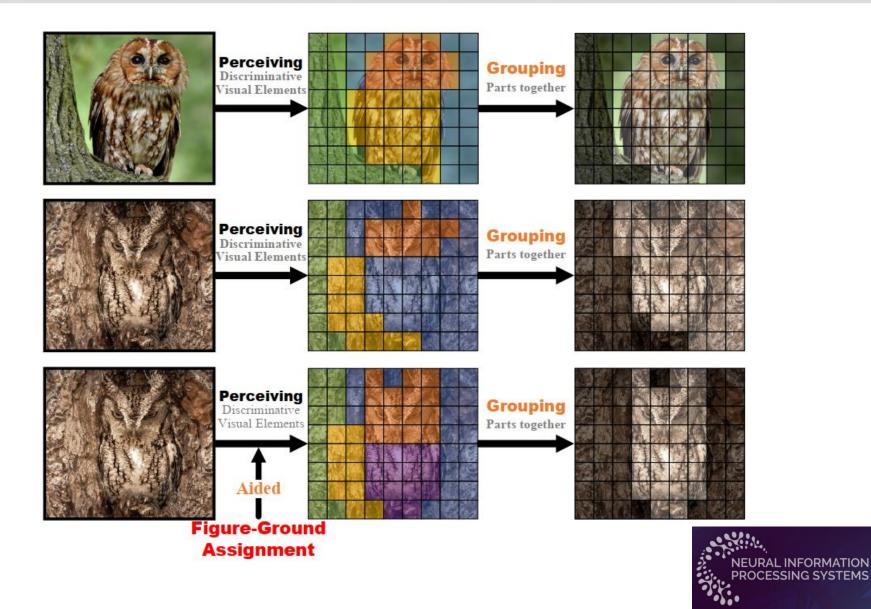
 University of Science and Technology of China
 University of Sydney

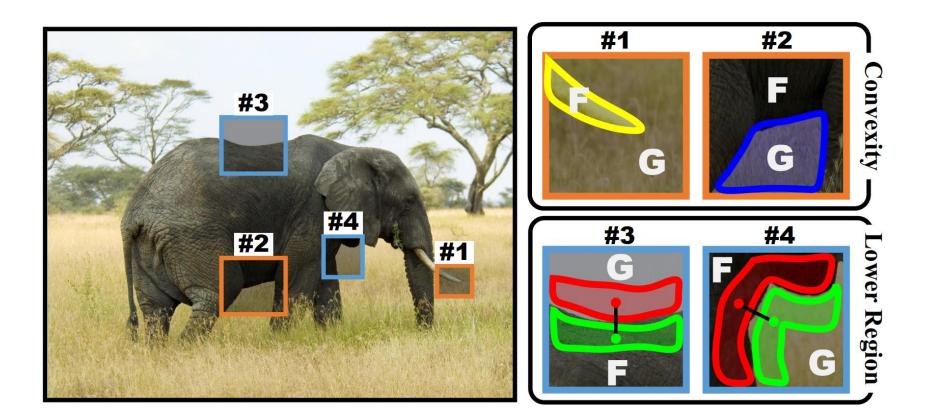
Institute of Artificial Intelligence, Hefei Comprehensive National Science Center

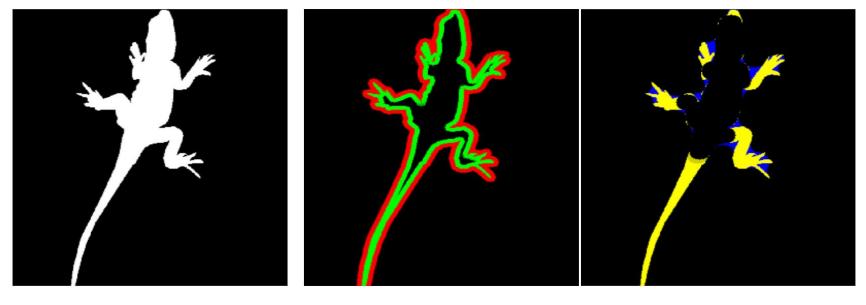
Motivation



Motivation

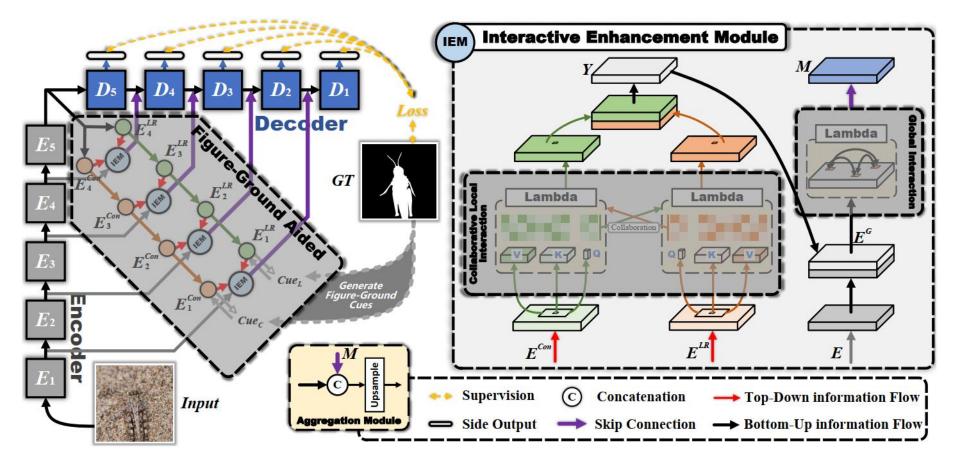



Motivation



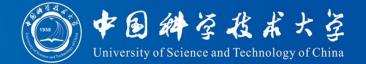
GT

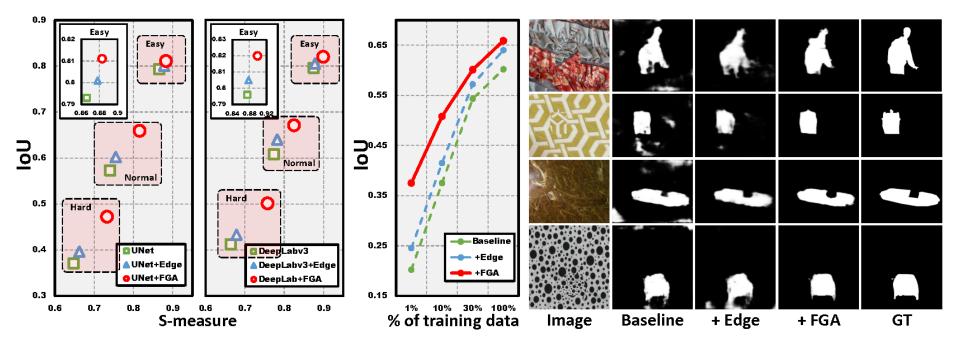
Lower Region


Convexity

Experiment

Human Test




Figure-Ground Segregation Test

Experiment

Table 2: Comparison with 6 SOTA methods on the CHA [59], CAM [27], and COD [11] datasets.

↑ indicates higher is better.

		[78]	[11]	[10]	[70]	[38]	[69]	Ours
6	$S(\uparrow)$.848	.869	.888	.893	.882	.888	.902
2	$E(\uparrow)$.870	.891	.942	.923	.942	.918	.947
CHA [59]	$F(\uparrow)$.702	.740	.816	.813	.810	.796	.840
		050	.044	.030	.030	.033	.031	.030
E	$S(\uparrow)$.732	.751	.820	.775	.782	.785	.803
	$E(\uparrow)$.882				
CAM [27]	$F(\uparrow)$.583	.606	.743	.673	.695	.686	.748
	$M(\downarrow)$.104	.100	.070	.088	.085	.086	.068
COD [11]	$S(\uparrow)$.727	.771	.815	.814	.800	.818	.821
	$E(\uparrow)$.779	.806	.887	.865	.868	.850	.895
	$F(\uparrow)$.509	.551	.680	.666	.660	.667	.687
	$M(\downarrow)$.056	.051	.037	.035	.040	.035	.031

Table 3: Comparison with six SOTA methods on the COVID-19 CT segmentation dataset.

	Dice(†)	Sen.(†)	Spec.(†)	$S(\uparrow)$	$E(\uparrow)$	$M(\downarrow)$
[50]	.439	.534	.858	.622	.625	.186
[41]	.583	.637	.921	.744	.625	.112
[54]	.623	.658	.926	.725	.739	.102
[29]	.515	.594	.840	.655	.814	.184
[82]	.581	.672	.902	.722	.662	.120
[13]	.682	.692	.943	.781	.720	.082
[20]	.700	.751	_	_	.860	.084
Ours	.754	.748	.973	.799	.911	.056

Table 4:	Performance	on	DUTS-Test	[65]	and
PASCAL	-S [30].				

	DUTS-Test			
	$M(\downarrow) F(\uparrow) S(\uparrow) E(\uparrow)$	$M(\downarrow) F(\uparrow) S(\uparrow) E(\uparrow)$		
[79]	.041 .807 .885 .914	.062 .800 .858 .891		
[67]	.035 .840 .892 .927	.062 .825 .862 .901		
[28]	.032 .866 .899 .937	.062 .825 .862 .901 .061 .824 .863 .903 .061 .827 .866 .907		
Ours	.033 .868 .902 .940	.061 $.827$ $.866$ $.907$		

Table 5: Comparison with four SOTA methods on Kvasir, CVC-612, ColonDB, ETIS, and Endo datasets.

and Endo datasets.							
		[50] [82] [14] [12] [80]	Ours				
[8]	Dice([†])	.818 .821 .723 .898 .907	.911				
	IoU(†)	.746 .743 .611 .840 .862	.858				
L.	$F(\uparrow)$.794 .808 .670 .885 .893	.898				
Kvasir [18]	$S(\uparrow)$.858 .862 .782 .915 .922	.922				
Ň	$E^m(\uparrow)$.893 .910 .849 .948 .944	.953				
	$M(\downarrow)$.055 .048 .075 .030 .028	.025				
[]	Dice(†)	.823 .794 .700 .899 .921	.924				
CVC-612 [2]	IoU(†)	.755 .729 .607 .849 .879	.884				
512	$F(\uparrow)$.811 .785 .647 .896 .914	.930				
č	$S(\uparrow)$.889 .873 .793 .936 .941	.943				
2	$E^m(\uparrow)$.954 .931 .885 .979 .972	.982				
_	$M(\downarrow)$.019 .022 .042 .009 .008	.008				
0	Dice([†])	.512 .483 .469 .709 .755	.768				
[09]	IoU(†)	.444 .410 .347 .640 .678	.683				
B	$F(\uparrow)$.498 .467 .379 .696 .737	.746				
<u>I</u>	$S(\uparrow)$.712 .691 .634 .819 .836	.842				
ColonDB	$E^{m}(\uparrow)$.776 .760 .765 .869 .883	.868				
0	$M(\downarrow)$.061 .064 .094 .045 .041	.040				
	Dice([†])	.398 .401 .297 .628 .719	.723				
8	IoU(†)	.335 .344 .217 .567 .664	.651				
	$F(\uparrow)$.366 .390 .231 .600 .678	.680				
ETIS [58]	$S(\uparrow)$.684 .683 .557 .794 .840	.822				
È	$E^m(\uparrow)$.740 .776 .633 .841 .830	.834				
	$M(\downarrow)$.036 .035 .109 .031 .020	.015				
Endo [61]	Dice(†)	.710 .707 .467 .871 .869	.889				
	IoU(†)	.627 .624 .329 .797 .807	.817				
	$F(\uparrow)$.684 .687 .341 .843 .849	.865				
	$S(\uparrow)$.843 .839 .640 .925 .925	.929				
	$E^m(\uparrow)$.876 .898 .817 .972 .943	.978				
	$M(\downarrow)$.022 .018 .065 .010 .010	.007				

NEURAL INFORMATION PROCESSING SYSTEMS

Thanks!