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1. Background:
a. Variational Autoencoder

probabilistic
encoder

𝑞థ(𝒙) 𝑞థ(𝒛|𝒙)

𝑝ఏ(𝒛|𝒙)

probabilistic
decoder

𝑝ఏ(𝒙)

intractable true posterior [1]

approximate posterior

= 𝐸௤ഝ(𝒛|𝒙) log 𝑝ఏ 𝒙 𝒛 − 𝐷௄௅(𝑞థ 𝒛 𝒙 ||𝑝ఏ(𝒛))

= 𝐸௤ഝ(𝒛|𝒙)[log 𝑝ఏ 𝒙 𝒛 − log 𝑞థ 𝒛 𝒙 + log 𝑝ఏ(𝒛)]

= 𝐸௤ഝ(𝒛|𝒙)[log 𝑝ఏ 𝒙, 𝒛 − log 𝑞థ(𝒛|𝒙)]

= 𝐸௤ഝ(𝒛|𝒙)[log 𝑝ఏ 𝒛 𝒙 − log 𝑞థ 𝒛 𝒙 + log 𝑝ఏ(𝒙)]

= 𝐸௤ഝ(𝒛|𝒙) log 𝑝ఏ 𝒙 − 𝐷௄௅(𝑞థ 𝒛 𝒙 ||𝑝ఏ(𝒛|𝒙))

≤ 𝐸௤ഝ(𝒛|𝒙) log 𝑝ఏ 𝒙

= log 𝑝ఏ(𝒙)

ℒா௅஻௢ 𝜃, 𝜙, 𝒙

conditional log-likelihood KL regularization

where,
𝑞థ(𝒙): the data distribution, described by the dataset and received by the encoder 𝝓
𝑝ఏ(𝒛): the prior distribution of latent variable 𝒛 in decoder 𝜽
𝑝ఏ(𝒙): the generative data distribution by decoder 𝜽 (or the generative likelihood)
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1. Background:
b. Posterior Collapse and Hole Problem

Posterior Collapse:

௄௅ థ ఏ

 ఏ థ ఏ

i.e., the latent variable contains little information of 

 ఏ
௣ഇ ௫,𝒛

௣ഇ 𝒛

௣ഇ ௫,𝒛

௣ഇ 𝒛|௫ ఏ

i.e., the decoder becomes insensitive to 
i.e., the decoder degenerates to an unconditional language model (for NLG)

ℒா௅஻௢ 𝜃, 𝜙, 𝒙 = 𝐸௤ഝ(𝒛|𝒙) log 𝑝ఏ 𝒙 𝒛 − 𝐷௄௅(𝑞థ 𝒛 𝒙 ||𝑝ఏ(𝒛))

probabilistic
encoder

𝑞థ(𝒙) 𝑞థ(𝒛|𝒙)

𝑝ఏ(𝒛|𝒙)

probabilistic
decoder

𝑝ఏ(𝒙)

intractable true posterior

approximate posterior
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1. Background:
c. Existing methods

probabilistic
encoder

𝑞థ(𝒙) 𝑞థ(𝒛|𝒙)

𝑝ఏ(𝒛|𝒙)

probabilistic
decoder

𝑝ఏ(𝒙)

intractable true posterior

approximate posterior

proposed

posterior collapse



1. Background:
c. Existing methods

probabilistic
encoder

𝑞థ(𝒙) 𝑞థ(𝒛|𝒙)

𝑝ఏ(𝒛|𝒙)

probabilistic
decoder

𝑝ఏ(𝒙)

intractable true posterior

approximate posterior

ℒா௅஻௢ 𝜃, 𝜙, 𝒙 = 𝐸௤ഝ(𝒛|𝒙) log 𝑝ఏ 𝒙 𝒛 − 𝐷௄௅(𝑞థ 𝒛 𝒙 ||𝑝ఏ(𝒛))

Posterior Collapse:

௄௅ థ ఏ

training strategy:
Cyclic-VAEs (cyclic annealing schedule); AE pretraining;

semantic learning of :
Skip-VAE (skip connection on ); BOW-VAEs (Bag-of-Word loss term on );

hard restriction on థ :

BN-VAEs (BN layer on థ ); vMF-VAEs (vMF distributions for థ ) and ఏ );

weakening ௄௅ థ ఏ in ா௅஻௢ :

-VAEs (smaller weight of ௄௅ థ ఏ in ா௅஻௢ );

FB-VAEs (hinge loss of ௄௅ థ ఏ in ா௅஻௢ );
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1. Background:
c. Existing methods

probabilistic
encoder

𝑞థ(𝒙) 𝑞థ(𝒛|𝒙)

𝑝ఏ(𝒛|𝒙)

probabilistic
decoder

𝑝ఏ(𝒙)

intractable true posterior

approximate posterior

proposed

posterior collapse

hole problem

solve posterior collapse effectively
at the cost of introducing the hole problem
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1. Background:
b. Posterior Collapse and Hole Problem

Hole Problem:

థ ఏ

where, థ ௤ഝ(𝒙) థ : the aggregated approximate posterior distribution

 థ ఏ

i.e. there exist areas (named as holes) with mismatch between density in థ and ఏ

Empirically, inferences located in such areas are observed to perform low-quality generation, e.g., 
obscure and corrupted images, or sentences against commonsense. 

probabilistic
encoder

𝑞థ(𝒙) 𝑞థ(𝒛|𝒙)

𝑝ఏ(𝒛|𝒙)

probabilistic
decoder

𝑝ఏ(𝒙)

intractable true posterior

approximate posterior

ℒா௅஻௢ 𝜃, 𝜙, 𝒙 = 𝐸௤ഝ(𝒛|𝒙) log 𝑝ఏ 𝒙 𝒛 − 𝐷௄௅(𝑞థ 𝒛 𝒙 ||𝑝ఏ(𝒛))
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1. Background:
c. Existing methods

Hole Problem:

థ ఏ

For image generation:
ascribed to the limited expressivity of ఏ ( ఏ by default)
 tackled by increasing the flexibility of ఏ through:

hierarchical priors, energy-based models, a mixture of encoders, etc.
For text generation:
there’s still little work on this, and we found that:
1. the vanilla VAEs (with ఏ ) for text generation has no hole problem;
2. existing methods can solve posterior collapse effectively at the cost of introducing hole problem;

probabilistic
encoder

𝑞థ(𝒙) 𝑞థ(𝒛|𝒙)

𝑝ఏ(𝒛|𝒙)

probabilistic
decoder

𝑝ఏ(𝒙)

intractable true posterior

approximate posterior

ℒா௅஻௢ 𝜃, 𝜙, 𝒙 = 𝐸௤ഝ(𝒛|𝒙) log 𝑝ఏ 𝒙 𝒛 − 𝐷௄௅(𝑞థ 𝒛 𝒙 ||𝑝ఏ(𝒛))
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1. Background:
c. Existing methods
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2. Methodology:
a. Regularization on the aggregated posterior distribution

rethink of ா௅஻௢ :

Q1: Since థ should not be too close to ఏ (otherwise it will lead to posterior collapse), 

what should be close to ఏ ௣ഇ 𝒙 ఏ ?

A1: The aggregated posterior distribution థ ௤ഝ(𝒙) థ .

Q2: So, how about regularizing థ towards ఏ instead in VAEs?

A2: It turns out to maximize ௤ഝ(𝒙) ா௅஻௢ ௤ഝ 𝒏,𝒛 (Hoffman et al. 2016):

௤ഝ(𝒙) ா௅஻௢ ௤ഝ 𝒏,𝒛 ௤ഝ(𝒙) ௤ഝ(𝒛|𝒙) ఏ ௄௅ థ ఏ

௤ഝ 𝒏,𝒛 ௤ഝ(𝒏,𝒛)
థ

థ థ

where is the identity of datapoints in , i.e., థ
ଵ

ே

effect: 1. weaken the regularization on థ ; 2. ensure థ ఏ .

ℒா௅஻௢ 𝜃, 𝜙, 𝒙 = 𝐸௤ഝ(𝒛|𝒙) log 𝑝ఏ 𝒙 𝒛 − 𝐷௄௅(𝑞థ 𝒛 𝒙 ||𝑝ఏ(𝒛))
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2. Methodology:
a. Regularization on the aggregated posterior distribution

Q3: Has anyone tried “regularizing థ towards ఏ instead in VAEs”?
A3: Yes, as below:

AAE (Adversarial Auto-Encoder): minimize their JS divergence in the framework of GAN
WAE (Wasserstein Auto-Encoder): minimize the Maximum Mean Discrepancy between them
iVAEMI (implicit VAE + MI regularization): minimize a dual form of KL divergence between them

But all their implementations of regularization are based on merely sampling sets from థ

and ఏ , and lead to a kind of local optimums.

1. a sampling set from such a 𝑞థ 𝒛 can already stimulate that from 𝑝ఏ 𝒛 to some degree;

2. but such a 𝑞థ 𝒛 still have evident difference from 𝑝ఏ 𝒛

Intuitively, a sampling set from 𝑞థ 𝒛 can hardly be the same as that from 𝑝ఏ 𝒛 , even when 𝑞థ 𝒛 = 𝑝ఏ 𝒛

𝑞థ 𝒛
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2. Methodology:
b. Density Gap-based regularization

probabilistic
encoder

𝑞థ(𝒙)

For example,

థ 𝒏 𝒏 𝒏
𝟐

ఏ

𝜇௡

𝜎௡
ଶ 𝑛 = 1,2, … , |𝐵| 𝑧௡,௠

𝑛 = 1,2, … , |𝐵|
𝑚 = 1,2, … , 𝑀

parameters of 𝑞థ 𝒛|𝒙𝒏 sampling set of 𝑞థ 𝒛

𝑁(𝟎, 𝐈) 𝑧௣௥௜,௠ 𝑚 = 1,2, … , 𝑀

sampling set of 𝑝ఏ 𝒛

sampling set−based
regularization on 𝑞థ 𝒛
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2. Methodology:
b. Density Gap-based regularization
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1. a sampling set from such a 𝑞థ 𝒛 can already stimulate that from 𝑝ఏ 𝒛 to some degree;

2. but such a 𝑞థ 𝒛 still have evident difference from 𝑝ఏ 𝒛

Intuitively, a sampling set from 𝑞థ 𝒛 can hardly be the same as that from 𝑝ఏ 𝒛 , even when 𝑞థ 𝒛 = 𝑝ఏ 𝒛
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2. Methodology:
b. Density Gap-based regularization

Intuitively, a sampling set from థ can hardly be the same as that from ఏ , even when థ

ఏ

The probability density of థ and ఏ are the same everywhere when థ ఏ

Density Gap-based regularization:

𝐾𝐿 𝑞థ 𝒛 ||𝑝ఏ 𝒛 = 𝐸௤ഝ(𝒛)[log
𝑞థ 𝒛

𝑝ఏ(𝒛)
]

≈
1

𝑆
෍[log 𝑞థ 𝑧௦ − log 𝑝ఏ 𝑧௦ ]

ௌ

௦ୀଵ

the density gap
between 𝑞థ 𝒛 and 𝑝ఏ 𝒛

at position 𝑧௦
we refer to this as

where,
𝑧௦ is the 𝑠௧௛ sample from 𝑞థ 𝒛

𝑞థ(𝑧௦) and 𝑝ఏ(𝑧௦) are the values of 
corresponding PDFs

stratified sampling &
reparameterization trick

parametric differentiable PDFs
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2. Methodology:
b. Density Gap-based regularization

probabilistic
encoder

𝑞థ(𝒙)

For example,

థ 𝒏 𝒏 𝒏
𝟐

ఏ

𝜇௡

𝜎௡
ଶ 𝑛 = 1,2, … , |𝐵| 𝑧௡,௠

𝑛 = 1,2, … , |𝐵|
𝑚 = 1,2, … , 𝑀

parameters of 𝑞థ 𝒛|𝒙𝒏 sampling set of 𝑞థ 𝒛

𝑁(𝟎, 𝐈) 𝑧௣௥௜,௠ 𝑚 = 1,2, … , 𝑀

sampling set of 𝑝ఏ 𝒛

sampling set−based
regularization on 𝑞థ 𝒛

𝑝ఏ 𝑧 = exp −𝑧ଶ/2 / 2𝜋

𝑞థ 𝑧 =
1

|𝐵|
෍ exp −

𝑧 − 𝜇௡
ଶ

2𝜎௡
ଶ / 2𝜋𝜎௡

|஻|

௡ୀଵ
density gap−based

regularization on 𝑞థ 𝒛

{𝑞థ 𝒛|𝒙𝒏 |𝑛}

𝑞థ(𝒛)
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2. Methodology:
b. Density Gap-based regularization

regularize 𝑞థ 𝒛 towards 𝑝ఏ 𝒛 in the 
perspective of their mismatch in PDFs
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2. Methodology:
c. Marginal regularization for more Mutual Information

We can apply the proposed regularization in training with mini-batch gradient descent: 

௤ഝ(𝒙) ா௅஻௢ ௤ഝ 𝒏,𝒛 ௤ഝ(𝒙) ௤ഝ(𝒛|𝒙) ఏ ௄௅ థ ఏ

where the data distribution థ is described by the current mini-batch 

ଵ ଶ |஻|

థ 𝒏 థ

the mutual information term to maximize has a limited upper bound:

௤ഝ 𝒏,𝒛 ௤ഝ 𝒏 ௤ഝ 𝒏,𝒛 ௤ഝ 𝒏

for a high dimensional prior distribution, it still have limited effect on solving posterior collapse 
(it is already enough for ௤ഝ 𝒏,𝒛 to reach with limited dimensions of being activated)

in order to activate all dimensions of , we propose marginal regularization:

௤ഝ(𝒙) ா௅஻௢ ௤ഝ 𝒏,𝒛೔ ௜

஽௜௠

௜ୀଵ
௤ഝ(𝒙) ௤ഝ(𝒛|𝒙) ఏ ௄௅ థ ௜ ఏ ௜

஽௜௠

௜ୀଵ

where denotes the index of dimension, ௜ denotes the ௧௛ component of , థ ௜ and 

ఏ ௜ denote the marginal distribution of థ and ఏ on the ௧௛ dimension respectively.
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2. Methodology:
c. Marginal regularization for more Mutual Information

in order to activate all dimensions of , we propose marginal regularization:

௤ഝ(𝒙) ா௅஻௢ ௤ഝ 𝒏,𝒛೔ ௜

஽௜௠

௜ୀଵ
௤ഝ(𝒙) ௤ഝ(𝒛|𝒙) ఏ ௄௅ థ ௜ ఏ ௜

஽௜௠

௜ୀଵ

where denotes the index of dimension, ௜ denotes the ௧௛ component of , థ ௜ and 

ఏ ௜ denote the marginal distribution of థ and ఏ on the ௧௛ dimension respectively.
in such way, the mutual information term to maximize has an upper bound linear with :

௤ഝ 𝒏,𝒛೔ ௜

஽௜௠

௜ୀଵ
௤ഝ 𝒏

஽௜௠

௜ୀଵ

we implement this for VAEs with ఏ , as its marginal distributions are independent:

ఏ ఏ ௜

஽௜௠

௜ୀଵ

it should be noted that, this independency-based decomposition of ఏ is not established for 
von Mises-Fisher distributions, e.g., ఏ , so we only implement the joint 
regularization for von Mises-Fisher distribution-based VAEs.



Improving Variational Autoencoders with Density Gap-based Regularization

2. Methodology:
d. Aggregation size for ablation

to further investigate the effect of maximizing mutual information, we split the mini-batch into 
non-overlapping subsets:

௜

஼

௜ୀଵ
௜ ௝

those subsets have the same size ௜ ௝
஻

஼
which we refer to as the aggregation size, as 

we only calculate the aggregated posterior distributions inside each subsets, and regularize them to 
the prior distribution respectively:

థ,௝ 𝒙∼௕ೕ థ

௄௅ థ,௝ ఏ ௜

஽௜௠

௜ୀଵ

஼

௝ୀଵ

in such way, the maximized mutual information term has an upper bound linear with :

௤ഝ,ೕ 𝒏,𝒛೔ ௜

஽௜௠

௜ୀଵ

஼

௝ୀଵ
௤ഝ,ೕ 𝒏

஽௜௠

௜ୀଵ

஼

௝ୀଵ

when , the proposed method is equivalent to the vanilla VAE.
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3. Experiment
a. Language modeling

𝑝𝑟𝑖𝑜𝑟𝐿𝐿 𝜃 = 𝐸௫ log 𝐸௣ഇ(௭)[𝑝ఏ(𝑥|𝑧)]

𝑝𝑜𝑠𝑡𝐿𝐿 𝜃, 𝜙 = 𝐸௫ log 𝐸௤ഝ(௭|௫)[𝑝ఏ(𝑥|𝑧)]

𝐾𝐿 𝜙 = 𝐸௫𝐾𝐿(𝑞థ 𝑧|𝑥 ||𝑝ఏ(𝑧))

𝑀𝐼 𝜙 = 𝐻(𝑞థ(𝑧)) − 𝐸௫𝐻(𝑞థ 𝑧|𝑥 )

𝐴𝑈 𝜙 = |{𝑖|𝑉𝑎𝑟௫𝐸௤ഝ ௭|௫ 𝑧௜ > 0.01}|

𝐶𝑈 𝜙 = |{𝑖|𝐾𝐿(𝑞థ 𝑧௜ ||𝑝ఏ(𝑧௜)) < 0.03}|

Small values indicate posterior collapse

Small values indicate the hole problem 
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3. Experiment
a. Language modeling

𝑝𝑟𝑖𝑜𝑟𝐿𝐿 𝜃 = 𝐸௫ log 𝐸௣ഇ(௭)[𝑝ఏ(𝑥|𝑧)]

𝑝𝑜𝑠𝑡𝐿𝐿 𝜃, 𝜙 = 𝐸௫ log 𝐸௤ഝ(௭|௫)[𝑝ఏ(𝑥|𝑧)]
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3. Experiment
b. Visualization of the posterior

ours
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3. Experiment
c. Interpolation study

Yahoo

Yelp

𝑧௔, 𝑧௕ ∼ 𝑞థ 𝒛|𝑥௔ , 𝑞థ(𝒛|𝑥௕)

𝑧ఒ = 𝜆 ∗ 𝑧௔ + 1 − 𝜆 ∗ 𝑧௕

𝑥ఒ ∼ 𝑝ఏ(𝒙|𝑧ఒ)

𝑅𝑜𝑢𝑔𝑒𝐿ிଵ =
1

2
(𝐹௟௖௦ 𝑥௔, 𝑥ఒ + 𝐹௟௖௦(𝑥௕, 𝑥ఒ))
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3. Experiment
c. Interpolation study

Short-Yelp

SNLI

𝑧௔, 𝑧௕ ∼ 𝑞థ 𝒛|𝑥௔ , 𝑞థ(𝒛|𝑥௕)

𝑧ఒ = 𝜆 ∗ 𝑧௔ + 1 − 𝜆 ∗ 𝑧௕

𝑥ఒ ∼ 𝑝ఏ(𝒙|𝑧ఒ)

𝑅𝑜𝑢𝑔𝑒𝐿ிଵ =
1

2
(𝐹௟௖௦ 𝑥௔, 𝑥ఒ + 𝐹௟௖௦(𝑥௕, 𝑥ఒ))
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3. Experiment
c. Interpolation study

𝑧௔, 𝑧௕ ∼ 𝑞థ 𝒛|𝑥௔ , 𝑞థ(𝒛|𝑥௕)

𝑧ఒ = 𝜆 ∗ 𝑧௔ + 1 − 𝜆 ∗ 𝑧௕

𝑥ఒ ∼ 𝑝ఏ(𝒙|𝑧ఒ)

𝑅𝑜𝑢𝑔𝑒𝐿ிଵ =
1

2
(𝐹௟௖௦ 𝑥௔, 𝑥ఒ + 𝐹௟௖௦(𝑥௕, 𝑥ఒ))
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3. Experiment
c. Interpolation study

𝑧௔, 𝑧௕ ∼ 𝑞థ 𝒛|𝑥௔ , 𝑞థ(𝒛|𝑥௕)

𝑧ఒ = 𝜆 ∗ 𝑧௔ + 1 − 𝜆 ∗ 𝑧௕

𝑥ఒ ∼ 𝑝ఏ(𝒙|𝑧ఒ)

𝑅𝑜𝑢𝑔𝑒𝐿ிଵ =
1

2
(𝐹௟௖௦ 𝑥௔, 𝑥ఒ + 𝐹௟௖௦(𝑥௕, 𝑥ఒ))


