Improving Variational Autoencoders with Density Gap-based Regularization

Jianfei Zhang^{1,2} Jun Bai^{1,2} Chenghua Lin³ Yanmeng Wang⁴ Wenge Rong^{1,2}

¹State Key Laboratory of Software Development Environment, Beihang University, China ²School of Computer Science and Engineering, Beihang University, China ³Department of Computer Science, University of Sheffield, United Kingdom ⁴Ping An Technology, China {zhangjf,ba1_jun,w.rong}@buaa.edu.cn c.lin@sheffield.ac.uk,wangyanmeng219@pingan.com.cn

Catalogue

- 1. Background:
 - a. Variational Autoencoder
 - b. Posterior Collapse and Hole Problem
 - c. Existing methods
- 2. Methodology
 - a. Regularization on the aggregated posterior distribution ——the theoretical support and previous methods
 - b. Density Gap-based regularization
 - c. Marginal regularization for more Mutual Information
 - d. Aggregation size for ablation
- 3. Experiment
 - a. Language modeling
 - b. Visualization of the posterior
 - c. Interpolation study

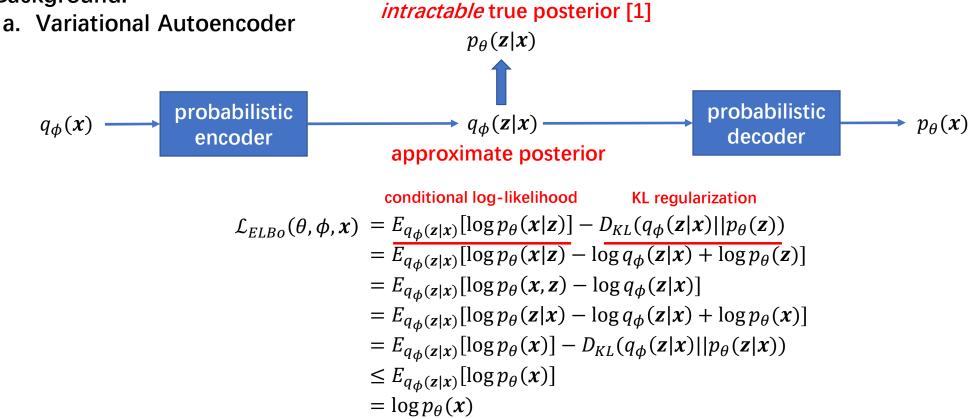
Improving Variational Autoencoders with Density Gap-based Regularization

- ----existing methods to solve the two problems

-the proposed PDF-oriented regularization method

-----regularization over marginal distributions

1. Background:

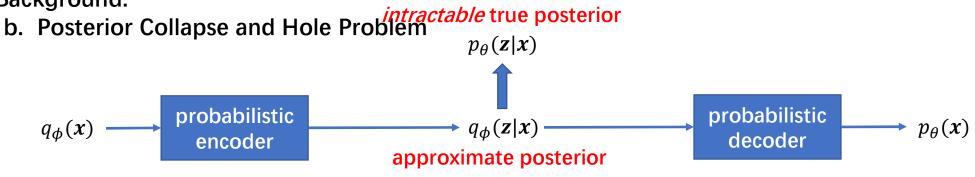


where,

 $q_{\phi}(x)$: the data distribution, described by the dataset and received by the encoder ϕ $p_{\theta}(z)$: the prior distribution of latent variable z in decoder θ

 $p_{\theta}(x)$: the generative data distribution by decoder θ (or the generative likelihood)

1. Background:

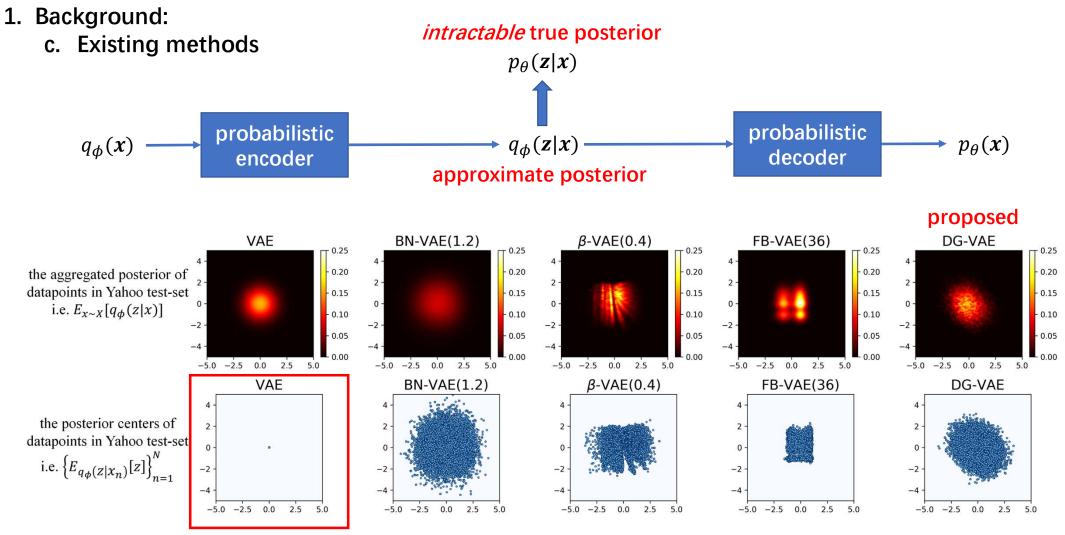


 $\mathcal{L}_{ELBo}(\theta, \phi, \mathbf{x}) = E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z}))$

Posterior Collapse:

$$\forall x \ D_{KL}(q_{\phi}(\mathbf{z}|x)||p_{\theta}(\mathbf{z})) \approx 0$$

→ $\forall x p_{\theta}(z|x) \approx q_{\phi}(z|x) \approx p_{\theta}(z)$ i.e., the latent variable *z* contains little information of *x* → $\forall x p_{\theta}(x|z) = \frac{p_{\theta}(x,z)}{p_{\theta}(z)} \approx \frac{p_{\theta}(x,z)}{p_{\theta}(z|x)} = p_{\theta}(x)$ i.e., the decoder θ becomes insensitive to *z* i.e., the decoder degenerates to an unconditional language model (for NLG)



posterior collapse

1. Background: c. Existing methods $q_{\phi}(x) \longrightarrow probabilistic encoder$ probabilistic encoder probabilistic encoderprobabilistic encoder

 $\mathcal{L}_{ELBo}(\theta,\phi,\boldsymbol{x}) = E_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})}[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z})] - D_{KL}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x})||p_{\theta}(\boldsymbol{z}))$

Posterior Collapse:

 $\forall x \, D_{KL}(q_{\phi}(\mathbf{z}|x)||p_{\theta}(\mathbf{z})) \approx 0$

→ training strategy:

Cyclic-VAEs (cyclic annealing schedule); AE pretraining;

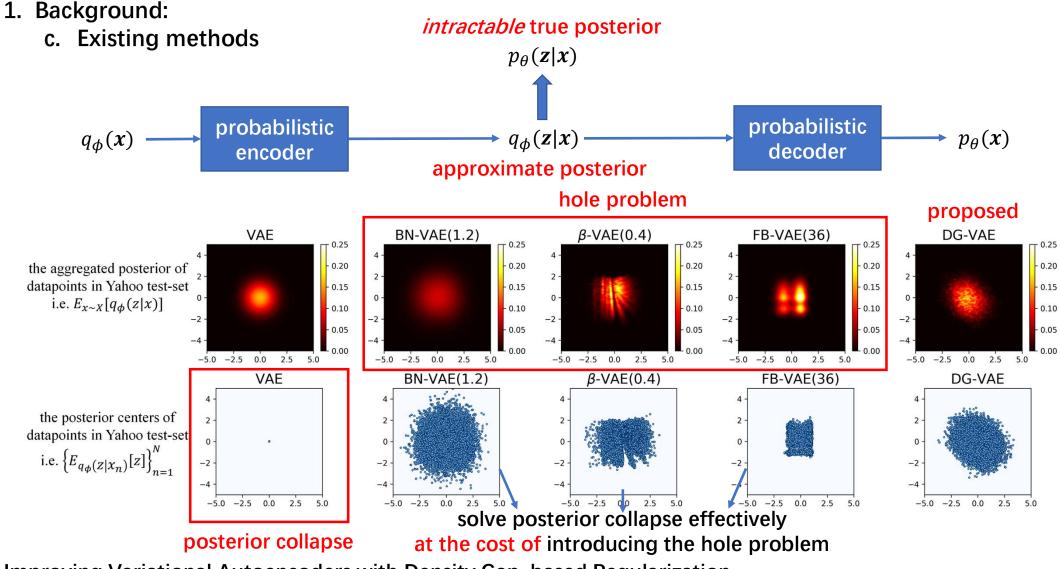
\rightarrow semantic learning of z:

Skip-VAE (skip connection on z); BOW-VAEs (Bag-of-Word loss term on z);

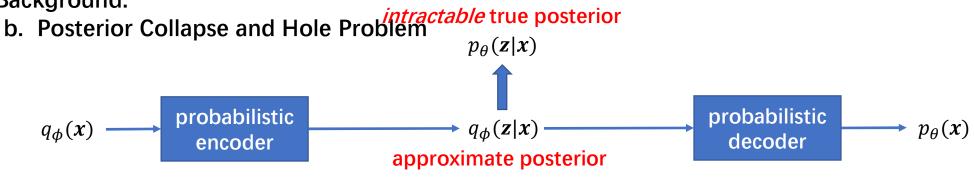
→ hard restriction on $q_{\phi}(z|x)$:

BN-VAEs (BN layer on $q_{\phi}(\boldsymbol{z}|\boldsymbol{x})$); **vMF-VAEs** (vMF distributions for $q_{\phi}(\boldsymbol{z}|\boldsymbol{x})$) and $p_{\theta}(\boldsymbol{z})$); \rightarrow weakening $D_{KL}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x})||p_{\theta}(\boldsymbol{z}))$ in $\mathcal{L}_{ELBo}(\theta, \phi, \boldsymbol{x})$:

 β -VAEs (smaller weight of $D_{KL}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x})||p_{\theta}(\boldsymbol{z}))$ in $\mathcal{L}_{ELBo}(\theta, \phi, \boldsymbol{x})$); FB-VAEs (hinge loss of $D_{KL}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x})||p_{\theta}(\boldsymbol{z}))$ in $\mathcal{L}_{ELBo}(\theta, \phi, \boldsymbol{x})$);



1. Background:



 $\mathcal{L}_{ELBo}(\theta, \phi, \mathbf{x}) = E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z}))$

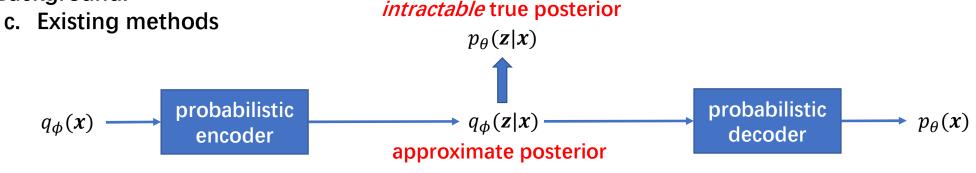
Hole Problem:

$$q_{\phi}(\mathbf{z}) \neq p_{\theta}(\mathbf{z})$$

where, $q_{\phi}(z) = E_{q_{\phi}(x)}[q_{\phi}(z|x)]$: the aggregated approximate posterior distribution $\Rightarrow \exists z \ q_{\phi}(z) \neq p_{\theta}(z)$

i.e. there exist areas (named as holes) with mismatch between density in $q_{\phi}(z)$ and $p_{\theta}(z)$ Empirically, inferences located in such areas are observed to perform low-quality generation, e.g., obscure and corrupted images, or sentences against commonsense.

1. Background:



 $\mathcal{L}_{ELBo}(\theta, \phi, \boldsymbol{x}) = E_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})}[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z})] - D_{KL}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x})||p_{\theta}(\boldsymbol{z}))$

Hole Problem:

$$q_{\phi}(\mathbf{z}) \neq p_{\theta}(\mathbf{z})$$

For image generation:

→ascribed to the limited expressivity of $p_{\theta}(z)$ ($p_{\theta}(z) = N(0, I)$ by default)

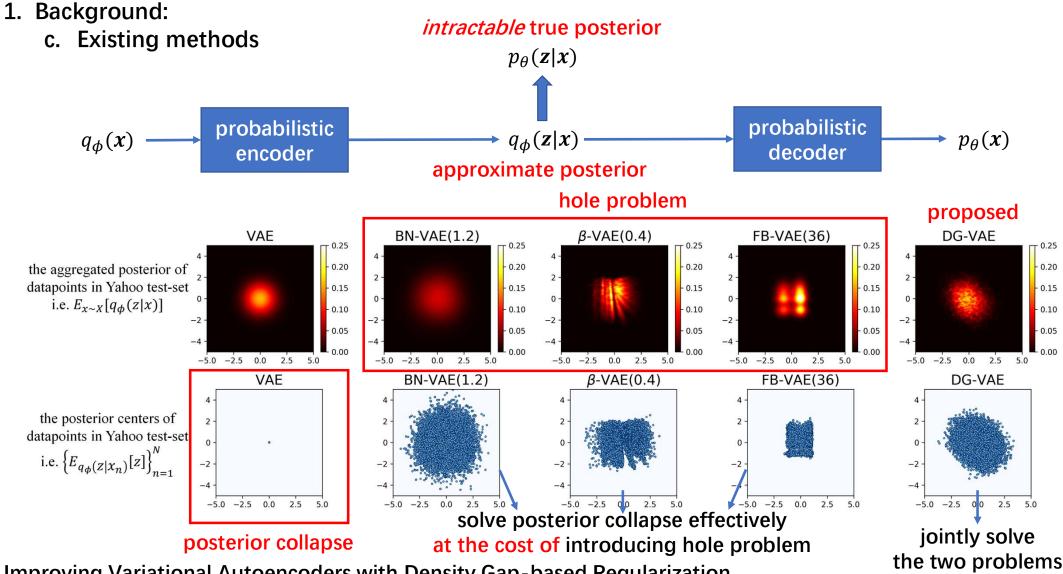
 \rightarrow tackled by increasing the flexibility of $p_{\theta}(z)$ through:

hierarchical priors, energy-based models, a mixture of encoders, etc.

For text generation:

→ there's still little work on this, and we found that:

- **1**. the vanilla VAEs (with $p_{\theta}(z) = N(0, I)$) for text generation has no hole problem;
- 2. existing methods can solve posterior collapse effectively at the cost of introducing hole problem;



a. Regularization on the aggregated posterior distribution

rethink of $\mathcal{L}_{ELBo}(\theta, \phi, \mathbf{x})$:

$$\mathcal{L}_{ELBo}(\theta, \phi, \mathbf{x}) = E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z}))$$

Q1: Since $q_{\phi}(z|x)$ should not be too close to $p_{\theta}(z)$ (otherwise it will lead to posterior collapse), what should be close to $p_{\theta}(z) = E_{p_{\theta}(x)}[p_{\theta}(z|x)]$?

A1: The aggregated posterior distribution $q_{\phi}(z) = E_{q_{\phi}(x)}[q_{\phi}(z|x)].$

Q2: So, how about regularizing $q_{\phi}(z)$ towards $p_{\theta}(z)$ instead in VAEs? A2: It turns out to maximize $E_{q_{\phi}(x)}\mathcal{L}_{ELBo}(\theta, \phi, x) + \mathbb{I}_{q_{\phi}(n,z)}[n, z]$ (Hoffman et al. 2016): $E_{q_{\phi}(x)}\mathcal{L}_{ELBo}(\theta, \phi, x) + \mathbb{I}_{q_{\phi}(n,z)}[n, z] = E_{q_{\phi}(x)}E_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z)||p_{\theta}(z))$ $\mathbb{I}_{q_{\phi}(n,z)}[n, z] = E_{q_{\phi}(n,z)}[\log \frac{q_{\phi}(n,z)}{q_{\phi}(n)q_{\phi}(z)}]$ where *n* is the identity of datapoints in *x*, i.e., $q_{\phi}(n = n) = \frac{1}{N}$, (n = 1, 2, ..., N)effect: 1. weaken the regularization on $q_{\phi}(z|x)$; 2. ensure $q_{\phi}(z) \approx p_{\theta}(z)$. Improving Variational Autoencoders with Density Gap-based Regularization

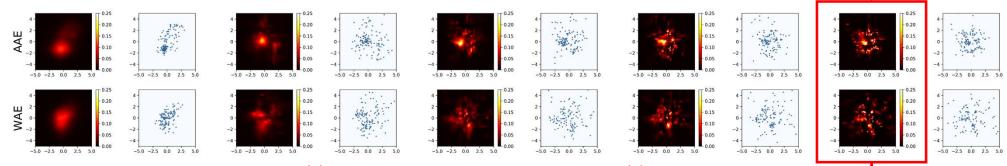
a. Regularization on the aggregated posterior distribution

Q3: Has anyone tried "regularizing $q_{\phi}(z)$ towards $p_{\theta}(z)$ instead in VAEs"?

A3: Yes, as below:

AAE (Adversarial Auto-Encoder): minimize their JS divergence in the framework of GAN WAE (Wasserstein Auto-Encoder): minimize the Maximum Mean Discrepancy between them iVAEMI (implicit VAE + MI regularization): minimize a dual form of KL divergence between them

But all their implementations of regularization are based on merely sampling sets from $q_{\phi}(z)$ and $p_{\theta}(z)$, and lead to a kind of local optimums.



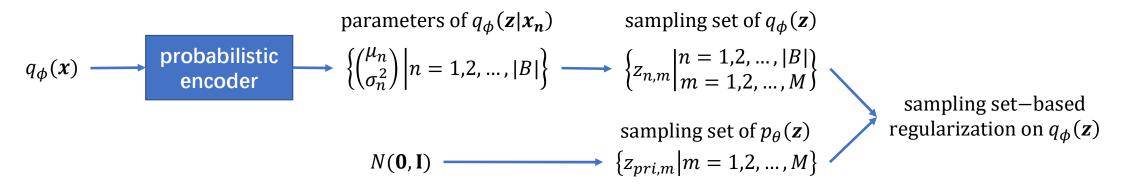
1. a sampling set from such a $q_{\phi}(\mathbf{z})$ can already stimulate that from $p_{\theta}(\mathbf{z})$ to some degree; 2. but such a $q_{\phi}(\mathbf{z})$ still have evident difference from $p_{\theta}(\mathbf{z})$

Intuitively, a sampling set from $q_{\phi}(z)$ can hardly be the same as that from $p_{\theta}(z)$, even when $q_{\phi}(z) = p_{\theta}(z)$ Improving Variational Autoencoders with Density Gap-based Regularization

- 2. Methodology:
 - b. Density Gap-based regularization

For example,

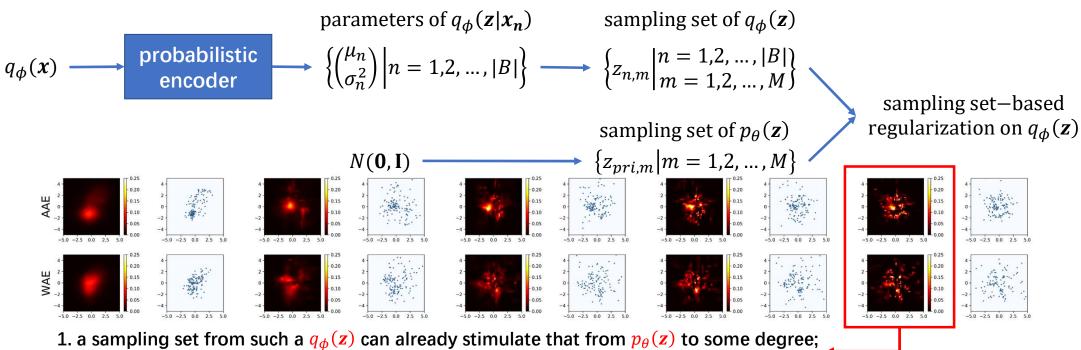
$$q_{\phi}(\mathbf{z}|\mathbf{x}_n) = N(\boldsymbol{\mu}_n, \boldsymbol{\sigma}_n^2), p_{\theta}(\mathbf{z}) = N(\mathbf{0}, \mathbf{I})$$



b. Density Gap-based regularization

For example,

$$q_{\phi}(\mathbf{z}|\mathbf{x}_n) = N(\boldsymbol{\mu}_n, \boldsymbol{\sigma}_n^2), p_{\theta}(\mathbf{z}) = N(\mathbf{0}, \mathbf{I})$$



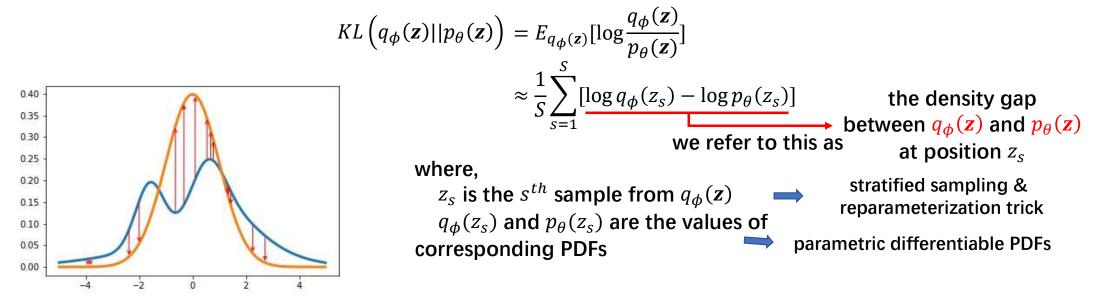
2. but such a $q_{\phi}(\mathbf{z})$ still have evident difference from $p_{\theta}(\mathbf{z})$

Intuitively, a sampling set from $q_{\phi}(z)$ can hardly be the same as that from $p_{\theta}(z)$, even when $q_{\phi}(z) = p_{\theta}(z)$ Improving Variational Autoencoders with Density Gap-based Regularization

- 2. Methodology:
 - b. Density Gap-based regularization

Intuitively, a sampling set from $q_{\phi}(z)$ can hardly be the same as that from $p_{\theta}(z)$, even when $q_{\phi}(z) = p_{\theta}(z)$

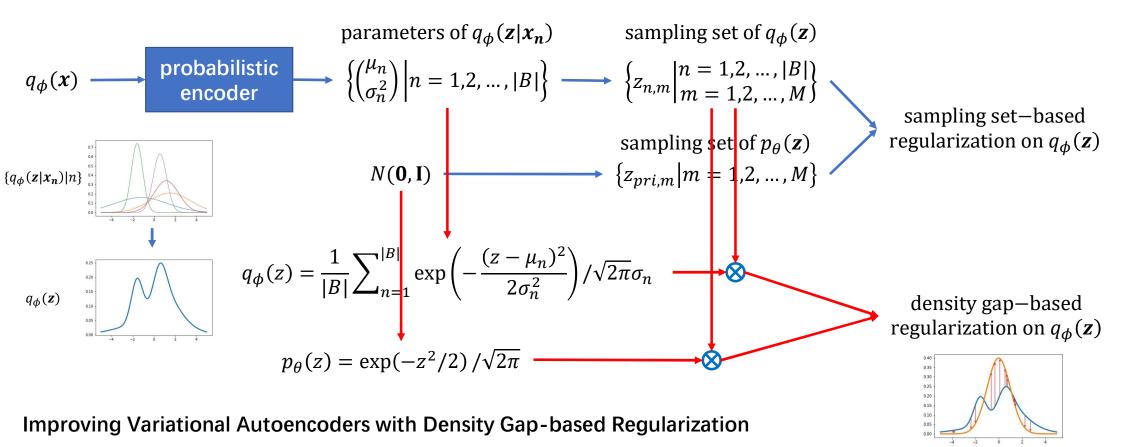
The probability density of $q_{\phi}(z)$ and $p_{\theta}(z)$ are the same everywhere when $q_{\phi}(z) = p_{\theta}(z)$ Density Gap-based regularization:



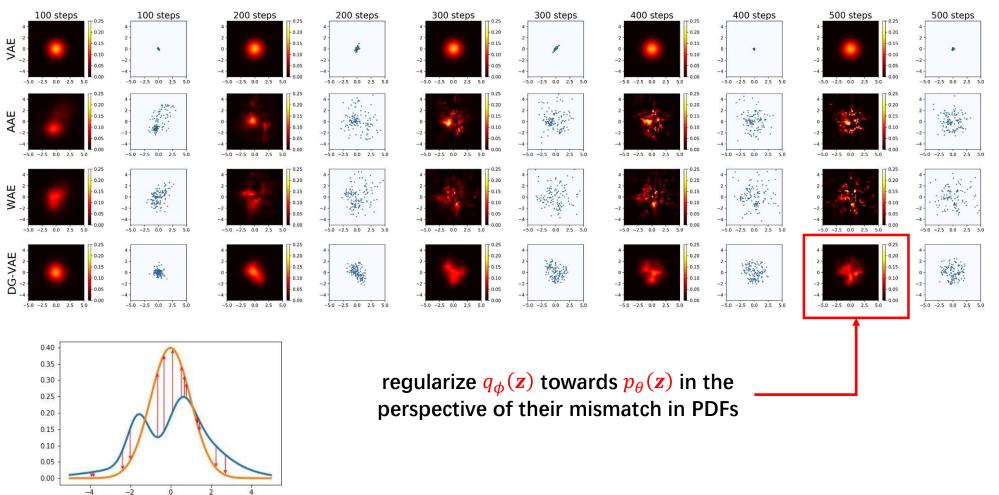
- 2. Methodology:
 - b. Density Gap-based regularization

For example,

$$q_{\phi}(\boldsymbol{z}|\boldsymbol{x}_n) = N(\boldsymbol{\mu}_n, \boldsymbol{\sigma}_n^2), p_{\theta}(\boldsymbol{z}) = N(\boldsymbol{0}, \boldsymbol{I})$$



b. Density Gap-based regularization



c. Marginal regularization for more Mutual Information

We can apply the proposed regularization in training with mini-batch gradient descent: $E_{q_{\phi}(x)}\mathcal{L}_{ELBo}(\theta, \phi, x) + \mathbb{I}_{q_{\phi}(n,z)}[n, z] = E_{q_{\phi}(x)}E_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z)||p_{\theta}(z))$ where the data distribution $q_{\phi}(x)$ is described by the current mini-batch *B*:

$$B = \{x_1, x_2, \dots, x_{|B|}\}$$
$$q_{\phi}(\mathbf{x} = x_n) = q_{\phi}(\mathbf{n}) = \frac{1}{|B|}$$

→the mutual information term to maximize has a limited upper bound:

$$\mathbb{I}_{q_{\phi}(\boldsymbol{n},\boldsymbol{z})}[\boldsymbol{n},\boldsymbol{z}] = H_{q_{\phi}(\boldsymbol{n})}(\boldsymbol{n}) - H_{q_{\phi}(\boldsymbol{n},\boldsymbol{z})}(\boldsymbol{n}|\boldsymbol{z}) \le H_{q_{\phi}(\boldsymbol{n})}(\boldsymbol{n}) = \log|B| < \log N$$

→ for a high dimensional prior distribution, it still have limited effect on solving posterior collapse (it is already enough for $\mathbb{I}_{q_{\phi}(n,z)}[n,z]$ to reach $\log|B|$ with limited dimensions of z being activated) → in order to activate all dimensions of z, we propose marginal regularization:

 $E_{q_{\phi}(x)}\mathcal{L}_{ELBo}(\theta,\phi,x) + \sum_{i=1}^{Dim} \mathbb{I}_{q_{\phi}(n,z_{i})}[n,z_{i}] = E_{q_{\phi}(x)}E_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - \sum_{i=1}^{Dim} D_{KL}(q_{\phi}(z_{i})||p_{\theta}(z_{i}))$ where i = 1, 2, ..., Dim denotes the index of dimension, z_{i} denotes the i^{th} component of $z, q_{\phi}(z_{i})$ and $p_{\theta}(z_{i})$ denote the marginal distribution of $q_{\phi}(z)$ and $p_{\theta}(z)$ on the i^{th} dimension respectively.

c. Marginal regularization for more Mutual Information

 \rightarrow in order to activate all dimensions of z, we propose marginal regularization:

 $E_{q_{\phi}(\boldsymbol{x})}\mathcal{L}_{ELBo}(\theta,\phi,\boldsymbol{x}) + \sum_{i=1}^{Dim} \mathbb{I}_{q_{\phi}(\boldsymbol{n},\boldsymbol{z}_{i})}[\boldsymbol{n},\boldsymbol{z}_{i}] = E_{q_{\phi}(\boldsymbol{x})}E_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})}[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z})] - \sum_{i=1}^{Dim} D_{KL}(q_{\phi}(\boldsymbol{z}_{i})||p_{\theta}(\boldsymbol{z}_{i}))$

where i = 1, 2, ..., Dim denotes the index of dimension, z_i denotes the i^{th} component of z, $q_{\phi}(z_i)$ and $p_{\theta}(z_i)$ denote the marginal distribution of $q_{\phi}(z)$ and $p_{\theta}(z)$ on the i^{th} dimension respectively. \Rightarrow in such way, the mutual information term to maximize has an upper bound linear with *Dim*:

$$\sum_{i=1}^{Dim} \mathbb{I}_{q_{\phi}(\boldsymbol{n},\boldsymbol{z}_{i})}[\boldsymbol{n},\boldsymbol{z}_{i}] \leq \sum_{i=1}^{Dim} H_{q_{\phi}(\boldsymbol{n})}(\boldsymbol{n}) = Dim * \log|B|$$

• we implement this for VAEs with $p_{\theta}(z) = N(0, I)$, as its marginal distributions are independent:

$$p_{\theta}(\mathbf{z}) = \prod_{i=1}^{Dim} p_{\theta}(\mathbf{z}_i)$$

→ it should be noted that, this independency-based decomposition of $p_{\theta}(z)$ is not established for von Mises-Fisher distributions, e.g., $p_{\theta}(z) = vMF(\mu, \kappa)$, so we only implement the joint regularization for von Mises-Fisher distribution-based VAEs.

d. Aggregation size for ablation

 \rightarrow to further investigate the effect of maximizing mutual information, we split the mini-batch *B* into non-overlapping subsets:

$$B = \bigcup_{i=1}^{C} b_i \text{ , s.t. } b_i \cap b_j = \emptyset \text{ iff } i \neq j$$

those subsets have the same size $|b| = |b_i| = |b_j| = \frac{|B|}{c}$ which we refer to as the aggregation size, as we only calculate the aggregated posterior distributions inside each subsets, and regularize them to the prior distribution respectively:

$$q_{\phi,j}(\mathbf{z}) = E_{\mathbf{x} \sim b_j}[q_{\phi}(\mathbf{z}|\mathbf{x})]$$
$$\sum_{j=1}^{C} \sum_{i=1}^{Dim} D_{KL}(q_{\phi,j}(\mathbf{z})||p_{\theta}(\mathbf{z}_i))$$

 \rightarrow in such way, the maximized mutual information term has an upper bound linear with $\log |b|$:

$$\sum_{j=1}^{C} \sum_{i=1}^{Dim} \mathbb{I}_{q_{\phi,j}(n,z_i)}[n,z_i] \le \sum_{j=1}^{C} \sum_{i=1}^{Dim} H_{q_{\phi,j}(n)}(n) = C * Dim * \log|b|$$

when |b| = 1, the proposed method is equivalent to the vanilla VAE.

a. Language modeling

Table 1: Statistics of sentences in the datasets

Dataset	Train	Valid	Test	Vocab size	Length (avg \pm std)
Yelp	100,000	10,000	10,000	19997	98.01 ± 48.86
Yahoo	100,000	10,000	10,000	20001	80.76 ± 46.21
Short-Yelp	100,000	10,000	10,000	8411	10.96 ± 3.60
SNLI	100,000	10,000	10,000	9990	11.73 ± 4.33

Table 2: Results of Language Modeling on Yahoo dataset. We bold up $MI(\phi) \ge 9.0$, $AU(\phi) \ge 30$, $CU(\phi) \ge 30$, the highest $priorLL(\theta)$ and $postLL(\theta, \phi)$ for the same methods.

Models	$priorLL(\boldsymbol{\theta})$	$postLL(oldsymbol{ heta},oldsymbol{\phi})$	$KL(\phi)$	$MI(\phi)$	$AU(\boldsymbol{\phi})$	$CU(\phi)$
VAE (default)	-330.7	-330.7	0.0	0.0	0	32
cyclic-VAE	-329.8	-328.9	1.1	1.0	2	31
bow-VAE	-330.5	-330.5	0.0	0.0	0	32
skip-VAE	-330.1	-325.2	5.0	4.3	8	31
δ-VAE(0.15)	-330.5	-330.6	4.8	0.0	0	0
BN-VAE(0.6)	-327.6	-321.1	6.6	5.9	32	32
BN-VAE(1.2)	-330.9	-310.1	26.2	9.2	32	0
BN-VAE(1.8)	-343.5	-308.6	51.3	9.2	32	0
FB-VAE(4)	-329.8	-328.4	3.9	1.8	32	32
FB-VAE(16)	-325.7	-320.8	16.1	8.5	32	8
FB-VAE(49)	-344.6	-296.1	50.0	9.2	32	0
β -VAE(0.4)	-330.8	-324.8	7.0	6.7	3	31
β -VAE(0.2)	-338.6	-310.3	30.1	9.2	22	25
β -VAE(0.1)	-369.9	-289.6	83.7	9.2	32	0
DG-VAE (b = 1)	-330.7	-330.7	0.0	0.0	0	32
DG-VAE(b =4)	-330.4	-318.3	14.3	9.1	11	32
DG-VAE ($ b = 32$)	-355.4	-294.1	65.2	9.1	32	32
DG-VAE (default)	-358.0	-290.8	70.8	9.1	32	32

$$priorLL(\theta) = E_x \log E_{p_{\theta}(z)}[p_{\theta}(x|z)]$$

$$postLL(\theta, \phi) = E_x \log E_{q_{\phi}(z|x)}[p_{\theta}(x|z)]$$

$$KL(\phi) = E_x KL(q_{\phi}(z|x))|p_{\theta}(z))$$

$$MI(\phi) = H(q_{\phi}(z)) - E_x H(q_{\phi}(z|x))$$

$$AU(\phi) = |\{i|Var_x E_{q_{\phi}(z|x)}[z_i] > 0.01\}|$$
Small values indicate posterior collapse

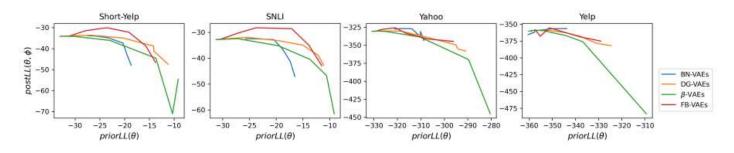
$$CU(\phi) = |\{i|KL(q_{\phi}(z_i))||p_{\theta}(z_i)) < 0.03\}|$$

Small values indicate the hole problem

a. Language modeling

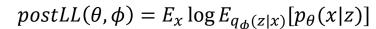
Table 1: Statistics of sentences in the datasets

Dataset	Train	Valid	Test	Vocab size	Length (avg \pm std)
Yelp	100,000	10,000	10,000	19997	98.01 ± 48.86
Yahoo	100,000	10,000	10,000	20001	80.76 ± 46.21
Short-Yelp	100,000	10,000	10,000	8411	10.96 ± 3.60
SNLI	100,000	10,000	10,000	9990	11.73 ± 4.33



 $priorLL(\theta) = E_x \log E_{p_{\theta}(z)}[p_{\theta}(x|z)]$

Figure 2: The curves of $priorLL(\theta)$ and $postLL(\theta, \phi)$ in Gaussian distribution-based VAEs.



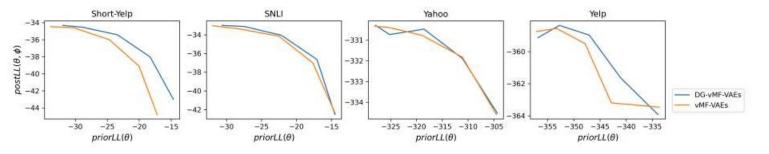


Figure 3: The curves of $priorLL(\theta)$ and $postLL(\theta, \phi)$ in vMF distribution-based VAEs.

b. Visualization of the posterior

Table 1: Statistics of sentences in the datasets

Dataset	Train	Valid	Test	Vocab size	Length (avg \pm std)
Yelp	100,000	10,000	10,000	19997	98.01 ± 48.86
Yahoo	100,000	10,000	10,000	20001	80.76 ± 46.21
Short-Yelp	100,000	10,000	10,000	8411	10.96 ± 3.60
SNLI	100,000	10,000	10,000	9990	11.73 ± 4.33

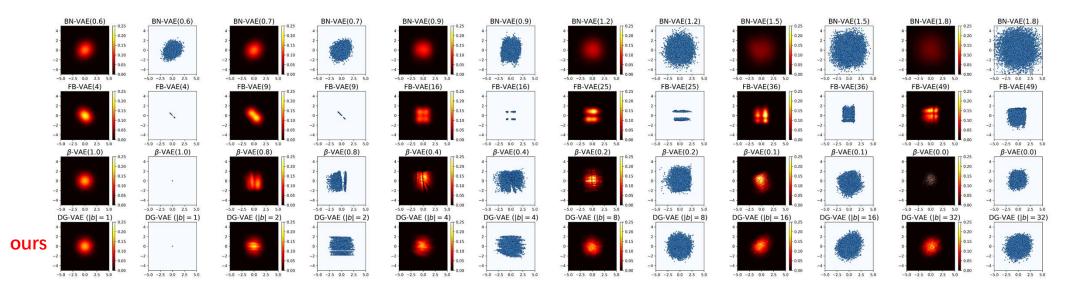
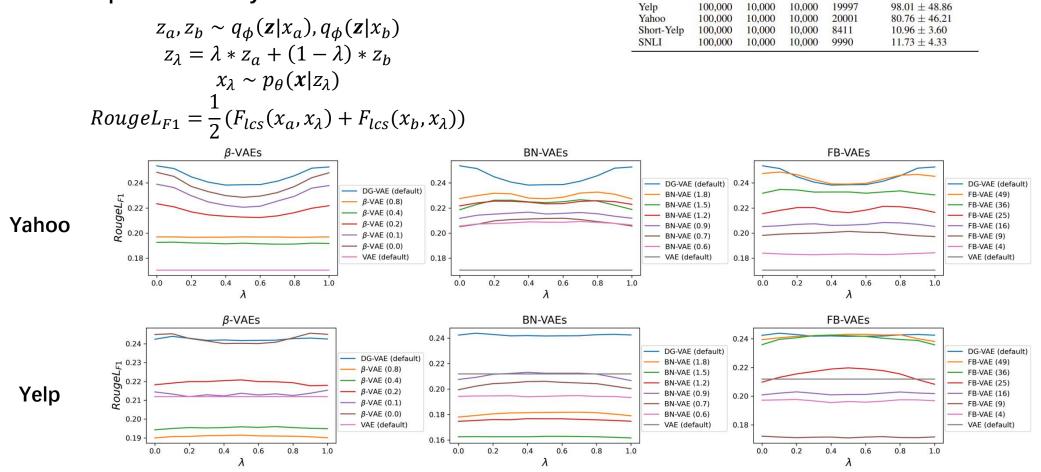


Figure 4: The visualization of the aggregated posterior distributions (red-in-black) and the posterior centers distributions (blue-in-white) for BN-VAEs, FB-VAEs, β -VAEs, and DG-VAEs on the Yahoo test-set. Illustrations for more datasets, more models, and more dimensions, are shown in Appendix G.

c. Interpolation study



Improving Variational Autoencoders with Density Gap-based Regularization

Table 1: Statistics of sentences in the datasets

Vocab size

Length (avg \pm std)

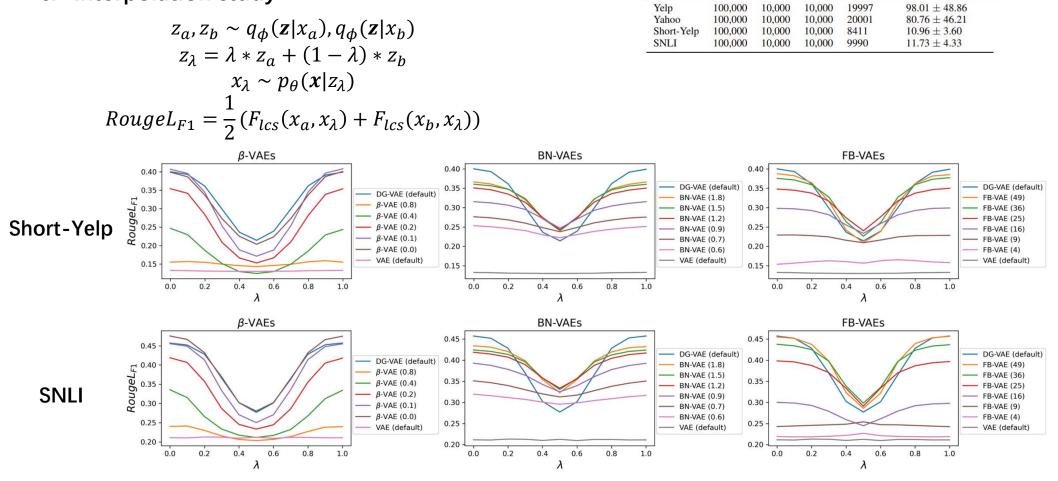
Test

Dataset

Train

Valid

c. Interpolation study



Improving Variational Autoencoders with Density Gap-based Regularization

Table 1: Statistics of sentences in the datasets

Vocab size

Length (avg \pm std)

Test

Dataset

Train

Valid

c. Interpolation study

$$\begin{aligned} z_{a}, z_{b} &\sim q_{\phi}(\mathbf{z}|x_{a}), q_{\phi}(\mathbf{z}|x_{b}) \\ z_{\lambda} &= \lambda * z_{a} + (1 - \lambda) * z_{b} \\ x_{\lambda} &\sim p_{\theta}(\mathbf{x}|z_{\lambda}) \end{aligned}$$
$$RougeL_{F1} &= \frac{1}{2} (F_{lcs}(x_{a}, x_{\lambda}) + F_{lcs}(x_{b}, x_{\lambda})) \end{aligned}$$

Table 1: Statistics of sentences in the datasets

Dataset	Train	Valid	Test	Vocab size	Length (avg \pm std)
Yelp	100,000	10,000	10,000	19997	98.01 ± 48.86
Yahoo	100,000	10,000	10,000	20001	80.76 ± 46.21
Short-Yelp	100,000	10,000	10,000	8411	10.96 ± 3.60
SNLI	100,000	10,000	10,000	9990	11.73 ± 4.33

	<i>x</i> _{<i>a</i>} :	a man in a white shirt and black pants poses in front of a large banner .	x_b :	two people hug each other to warm up while they are locked out of the house
		β -VAE(0.1)		DG-VAE
λ	$DG(z_{\lambda})$	x_{λ}	$DG(z_{\lambda})$	x_{λ}
0.0	60.2	<mark>a man in a</mark> black <mark>shirt and black pants</mark> sits in front of a large gathering .	56.5	a man in a white shirt and black pants jumps in front of a large screen
0.1	38.6	a man in a black shirt and blue pants walking in front of a large gathering	44.2	a man in a white shirt and black pants jumps in front of a large screen
0.2	-21.9	a man in jeans and a white shirt walking down in an orange kayak in the forest	12.5	a man in a white shirt and black pants jumps in front of a large audience
0.3	-121.4	a man in shorts and a black shirt walking through snow , on the street .	-38.6	a man in a black shirt and black pants kneels out in front of the <unk></unk>
0.4	-157.4	a toddler , wearing shorts and black pants walking a green scooter while looking in the water .	-47.2	a man wearing a black shirt shovels snow while standing in front of the <unk></unk>
0.5	-159.9	a toddler girl wearing black shorts and sandals walking through her house while on the sunny sidewalk.	-53.7	a man wearing a black shirt is shoveling snow, while standing in front of the <unk></unk>
0.6	-161.7	a toddler girl wearing pink pants and boots walks across be street in front of cars	-63.5	we people wearing black shirts are waiting in front of two cars they made from a field
0.7	-164.6	a girl , who looks over her head while she sits alone on the edge .	-76.7	two people chat while one is standing next to her friends on the deck .
0.8	-46.4	iwo people decide whether , as they walk up in the water while looking up .	-26.2	iwo people chat as they are standing next to two <unk> on the roof .</unk>
0.9	37.5	two people decide whether to each other , and one is out out of the window .	40.8	figure out how to the house .
1.0	66.8	two people hug as they walk out and sun to get out of the sun .	64.8	figure but how to get the best

	x_a :	two girls walking in a park .	x_b :	the two kids are playing in water
		β -VAE(0.1)		DG-VAE
λ	$DG(z_{\lambda})$	x_{λ}	$DG(z_{\lambda})$	x_{λ}
0.0	32.9	<mark>two</mark> girls walking <mark>in</mark> a park .	38.9	<mark>two</mark> girls walking <mark>in</mark> a park .
0.1	26.1	<mark>two</mark> girls walking <mark>in</mark> a park .	35.5	<mark>two</mark> girls walking <mark>in</mark> a park .
0.2	11.4	<mark>two</mark> women <mark>walking in</mark> a park <mark>.</mark>	29.4	<mark>two</mark> girls walking <mark>in</mark> a park .
0.3	-11.3	<mark>two</mark> women <mark>walking in</mark> a pool <mark>.</mark>	20.6	<mark>two</mark> girls walking <mark>in</mark> a park .
0.4	-42.2	<mark>two</mark> cats <mark>playing in</mark> a pool <mark>.</mark>	9.2	<mark>two</mark> girls sit <mark>in</mark> a beach <mark>.</mark>
0.5	-55.4	an african man walks <mark>in</mark> the pool <mark>.</mark>	-4.8	<mark>two</mark> girls sit <mark>in</mark> beach
0.6	-48.0	an elderly man walks <mark>in</mark> water .	1.0	<mark>two</mark> girls are playing in a boat .
0.7	-15.1	<mark>the two</mark> children <mark>are playing in water .</mark>	18.7	four <mark>girls</mark> are <mark>playing in</mark> water
0.8	12.2	the <mark>two</mark> children <mark>are playing in water</mark>	31.7	the <mark>two kids</mark> are playing in water
0.9	30.0	the <mark>two kids</mark> are playing in water	40.1	the <mark>two kids</mark> are playing in water
1.0	38.2	the two kids are playing in water	43.9	the two kids are playing in water

c. Interpolation study

$$\begin{aligned} z_{a}, z_{b} &\sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x}_{a}), q_{\phi}(\boldsymbol{z}|\boldsymbol{x}_{b}) \\ z_{\lambda} &= \lambda * z_{a} + (1 - \lambda) * z_{b} \\ x_{\lambda} &\sim p_{\theta}(\boldsymbol{x}|z_{\lambda}) \end{aligned}$$
$$RougeL_{F1} &= \frac{1}{2} (F_{lcs}(\boldsymbol{x}_{a}, \boldsymbol{x}_{\lambda}) + F_{lcs}(\boldsymbol{x}_{b}, \boldsymbol{x}_{\lambda})) \end{aligned}$$

	x_a :	great place for a romantic <mark><unk></unk></mark> .	x_b :	the asian cucumber salad was bland
		β -VAE(0.1)		DG-VAE
λ	$DG(z_{\lambda})$	x_λ	$DG(z_{\lambda})$	x_λ
0.0	46.9	<mark>great place</mark> for a romantic <mark><unk></unk></mark> .	52.1	<mark>great</mark> place for a romantic dinner .
0.1	32.2	<mark>great place</mark> for a romantic <mark><unk></unk></mark> .	38.3	<mark>great place</mark> for a romantic dinner .
0.2	-5.6	<mark>great place</mark> for a chilly <mark><unk></unk></mark> .	3.5	<mark>great</mark> place for lunch .
0.3	-55.6	oh you 're perfect and special	-16.7	<mark>great</mark> place for lunch .
0.4	-60.4	oh you 'll enjoy <mark>flue</mark> special <mark>.</mark>	-9.2	<mark>great</mark> for lunch <mark>.</mark>
0.5	-75.0	the guys keep it clean though .	-9.4	the best lunch was an tasteless .
0.6	-86.0	the apartments make it way comfortable .	-17.2	the usual street salad was boring .
0.7	-72.0	the specialty pie are good out .	-32.7	<mark>the</mark> usual cookie <mark>salad</mark> was bland .
0.8	-6.3	the wood martinis are very cheap	11.6	the usual cookie <mark>salad</mark> was bland .
0.9	34.3	the wood martinis taste was bland .	43.6	the usual scallops which was bland
1.0	49.7	the english muffins were good bland	56.8	the usual scallops which was bland .

Table 1: Statistics of sentences in the datasets

Dataset	Train	Valid	Test	Vocab size	Length (avg \pm std
Yelp	100,000	10,000	10,000	19997	98.01 ± 48.86
Yahoo	100,000	10,000	10,000	20001	80.76 ± 46.21
Short-Yelp	100,000	10,000	10,000	8411	10.96 ± 3.60
SNLI	100,000	10,000	10,000	9990	11.73 ± 4.33

	<i>x</i> _a :	our server was not even <unk> familiar with the food or food preparation .</unk>	<i>x</i> _b :	have had just about everything on the menu and everything is delicious i
		β -VAE(0.1)		DG-VAE
λ	$DG(z_{\lambda})$	x_λ	$DG(z_{\lambda})$	x_{λ}
0.0	82.1	our server was not even warm about the food and the quality service .	69.8	<mark>our server was not even <unk> with <mark>the</mark> food or service on food .</unk></mark>
0.1	58.0	our server was not even busy <mark>on the</mark> menu and the <mark>food</mark> network .	51.9	<mark>our server was not even <unk> with the food or food poisoning .</unk></mark>
0.2	-11.4	our waitress <mark>was not even</mark> busy <mark>on the</mark> menu and the <mark>food</mark> sucked <mark>.</mark>	1.0	our server was n't a few times but <mark>the food</mark> seems absolutely <mark>delicious .</mark>
0.3	-126.1	still they <mark>was not even</mark> warm by <mark>the food</mark> and taste was awesome .	-33.7	<mark>our</mark> dishes were n't a bit of <mark>everything</mark> but <mark>the food</mark> has been impeccable <mark>.</mark>
0.4	-179.0	still unfortunately <mark>the</mark> cashier <mark>just</mark> kept asking <mark>the menn and</mark> was seriously awesome <mark>.</mark>	-32.8	actually <mark>was</mark> still having a bit <mark>on</mark> the menu that was terrible <mark>and</mark> beyond <mark>.</mark>
0.5	-177.4	<mark>even</mark> we was nothing as much of <mark>the</mark> menu and food was decent	-32.4	feel so just of a plus <mark>on the menu and food</mark> was beyond <mark>delicious .</mark>
0.6	-169.5	then still had all about eating at the food and everything was good	-33.2	feel all just for <mark>the</mark> amount of <mark>food and everything</mark> was beyond <mark>delicious .</mark>
0.7	-63.0	did say before they use no food and there are very quick	-13.2	have also had one of the items on food and everything was delicious
0.8	13.6	did say before they use from the menu and menu was decent	29.4	have also had no lunch on the menu and everything is outstanding
0.9	60.0	have had just just twice there and their food is very yummy	56.5	have also had no reservations on the menu and everything is delicious i
1.0	76.3	have had just just because of the menu and everything is awesome	68.1	have also just ordered each on the menu and everything is delicious i