Enhanced Bilevel Optimization via Bregman Distance

Feihu Huang^{1,2}, Junyi Li¹, Shangqian Gao¹, Heng Huang¹

University of Pittsburgh Nanjing University of Aeronautics & Astronautics

NeurIPS | 2022

Thirty-sixth Conference on Neural Information Processing Systems

- Enhanced Bilevel Optimization via Bregman Distance
- Convergence Properties
- Experimental Results
- Conclusions

- Enhanced Bilevel Optimization via Bregman Distance
- Convergence Properties
- Experimental Results
- Conclusions

- Bilevel optimization can effectively solve the problems with a hierarchical structure.
- So it recently has been widely used in many machine learning tasks such as hyper-parameter optimization, meta learning and reinforcement learning.

$$\min_{x \in \mathcal{X} \subseteq \mathbb{R}^{d_1}} f(x, y^*(x)) + h(x),$$

s.t. $y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_2}} g(x, y),$

Background

For example, the hyper-representation learning could be seen as a generalized meta learning, defined as:

$$\min_{\lambda} l_{val}(\lambda, w^*(\lambda)) := \mathbb{E}_{\xi} \Big[\frac{1}{|D_{\mathcal{V},\xi}|} \sum_{(x_i, y_i) \in D_{\mathcal{V},\xi}} l\Big(w^*_{\xi}(\lambda)^T \phi(x_i; \lambda), y_i\Big); \xi \Big] + \alpha \|\lambda\|_1$$

s.t. $w^*_{\xi}(\lambda) = \arg\min_{w} l_{tr}(\lambda, w; \xi) := \frac{1}{|D_{\mathcal{T},\xi}|} \sum_{(x_i, y_i) \in D_{\mathcal{T},\xi}} l\Big(w^T \phi(x_i; \lambda), y_i\Big) + C \|w\|^2,$

where $l(\cdot)$ denotes the cross entropy loss, $D_{\mathcal{T},\xi}$ and $D_{\mathcal{V},\xi}$ are training and validation datasets for randomly sampled meta task ξ . Here $\phi(\cdot, \cdot)$ is a four-layers convolutional neural network with maxpooling and 32 filters per layer [9], which denotes a representation mapping. λ denotes the parameter

- Enhanced Bilevel Optimization via Bregman Distance
- Convergence Properties
- Experimental Results
- Conclusions

Bregman Distance

Given a ρ -strongly convex and continuously-differentiable function $\psi(x)$, *i.e.*, $\langle x_1 - x_2, \nabla \psi(x_1) - \nabla \psi(x_2) \rangle \ge \rho \|x_1 - x_2\|^2$, we define a Bregman distance [3, 4] for any $x_1, x_2 \in \mathcal{X}$:

$$D_{\psi}(x_1, x_2) = \psi(x_1) - \psi(x_2) - \langle \nabla \psi(x_2), x_1 - x_2 \rangle.$$

In Algorithm 1, we use the mirror descent iteration to update the variable x at t + 1-th step:

$$x_{t+1} = \arg\min_{x \in \mathcal{X}} \left\{ \langle w_t, x \rangle + h(x) + \frac{1}{\gamma} D_{\psi_t}(x, x_t) \right\},\tag{5}$$

where $\gamma > 0$ is stepsize, and w_t is an estimator of $\nabla F(x_t)$. Here the mirror function ψ_t can be dynamic as the algorithm is running. Let $\psi_t(x) = \frac{1}{2} ||x||^2$, we have $D_{\psi_t}(x, x_t) = \frac{1}{2} ||x - x_t||^2$. When $\mathcal{X} = \mathbb{R}^{d_1}$, the above subproblem (5) is equivalent to the proximal gradient descent. When $\mathcal{X} \subseteq \mathbb{R}^{d_1}$ and h(x) = 0, the above subproblem (5) is equivalent to the projection gradient descent.

Enhanced Bilevel Optimization via Bregman Distance

$$\min_{x \in \mathcal{X} \subseteq \mathbb{R}^{d_1}} f(x, y^*(x)) + h(x),$$

s.t. $y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_2}} g(x, y),$

Algorithm 1 Deterministic BiO-BreD Algorithm

1: Input: $T, K \ge 1$, learning rates $\gamma > 0, \lambda > 0$; 2: initialize: $x_0 \in \mathcal{X}$ and $y_{-1}^K = y_0 \in \mathbb{R}^{d_2}$; 3: for $t = 0, 1, \dots, T - 1$ do Let $y_t^0 = y_{t-1}^K$; 4: for $k = 1, \cdots, K$ do 5: Update $y_t^k = y_t^{k-1} - \lambda \nabla_y q(x_t, y_t^{k-1});$ 6: end for 7: Compute partial derivative $w_t = \frac{\partial f(x_t, y_t^K)}{\partial x}$ via backpropagation w.r.t. x_t ; 8: Given a ρ -strongly convex mirror function ψ_t ; 9: Update $x_{t+1} = \arg\min_{x \in \mathcal{X}} \left\{ \langle w_t, x \rangle + h(x) + \frac{1}{\gamma} D_{\psi_t}(x, x_t) \right\};$ 10:11: end for 12: **Output:** Uniformly and randomly choose from $\{x_t, y_t\}_{t=1}^T$.

Enhanced Bilevel Optimization via Bregman Distance

$$\min_{x \in \mathcal{X} \subseteq \mathbb{R}^{d_1}} \mathbb{E}_{\xi \sim \mathcal{D}} \left[f(x, y^*(x); \xi) \right] + h(x),$$

s.t. $y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_2}} \mathbb{E}_{\zeta \sim \mathcal{D}'} \left[g(x, y; \zeta) \right],$

Algorithm 2 Stochastic BiO-BreD (SBiO-BreD) Algorithm

- 1: Input: $T, K \ge 1$, stepsizes $\gamma > 0, \lambda > 0, \{\eta_t\}_{t=1}^T$;
- 2: initialize: $x_0 \in \mathcal{X}$ and $y_0 \in \mathbb{R}^{d_2}$;
- 3: for $t = 0, 1, \dots, T 1$ do
- 4: Draw randomly b independent samples $\mathcal{B}_t = \{\zeta_t^i\}_{i=1}^b$, and compute stochastic partial derivatives $v_t = \nabla_y g(x_t, y_t; \mathcal{B}_t)$;
- 5: Update $y_{t+1} = y_t \lambda \eta_t v_t$;
- 6: Draw randomly b(K+1) independent samples $\bar{\mathcal{B}}_t = \{\xi_{t,i}, \zeta_{t,i}^0 \cdots, \zeta_{t,i}^{K-1}\}_{i=1}^b$, and compute stochastic partial derivatives $w_t = \bar{\nabla} f(x_t, y_t; \bar{\mathcal{B}}_t)$;
- 7: Given a ρ -strongly convex mirror function ψ_t ;
- 8: Update $x_{t+1} = \arg\min_{x \in \mathcal{X}} \left\{ \langle w_t, x \rangle + h(x) + \frac{1}{\gamma} D_{\psi_t}(x, x_t) \right\};$
- 9: end for
- 10: **Output:** Uniformly and randomly choose from $\{x_t, y_t\}_{t=1}^T$.

Enhanced Bilevel Optimization via Bregman Distance

Algorithm 3 Accelerated Stochastic BiO-BreD (ASBiO-BreD) Algorithm

- 1: Input: $T, K \ge 1, q$, stepsizes $\gamma > 0, \lambda > 0, \{\eta_t\}_{t=1}^T$, mini-batch sizes b and b_1 ;
- 2: initialize: $x_0 \in \mathcal{X}$ and $y_0 \in \mathbb{R}^{d_2}$;
- 3: for $t = 0, 1, \dots, T 1$ do
- if mod(t,q) = 0 then 4:
- Draw randomly b independent samples $\mathcal{B}_t = \{\zeta_t^i\}_{i=1}^b$, and compute stochastic partial 5: derivative $v_t = \nabla_u g(x_t, y_t; \mathcal{B}_t);$
- Draw randomly b(K+1) independent samples $\bar{\mathcal{B}}_t = \{\xi_{t,i}, \zeta_{t,i}^0 \cdots, \zeta_{t,i}^{K-1}\}_{i=1}^b$, and compute 6: stochastic partial derivative $w_t = \overline{\nabla} f(x_t, y_t; \mathcal{B}_t);$
- 7: else
- Generate randomly b_1 independent samples $\mathcal{I}_t = \{\zeta_t^i\}_{i=1}^{b_1}$, and compute stochastic partial 8: derivative $v_t = \nabla_u g(x_t, y_t; \mathcal{I}_t) - \nabla_u g(x_{t-1}, y_{t-1}; \mathcal{I}_t) + v_{t-1};$
- Generate randomly $b_1(K+1)$ independent samples $\overline{\mathcal{I}}_t = \{\xi_{t,i}, \zeta_{t,i}^0 \cdots, \zeta_{t,i}^{K-1}\}_{i=1}^{b_1}$, and 9: compute stochastic partial derivative $w_t = \overline{\nabla} f(x_t, y_t; \overline{\mathcal{I}}_t) - \overline{\nabla} f(x_{t-1}, y_{t-1}; \overline{\mathcal{I}}_t) + w_{t-1};$
- end if 10:
- Update $y_{t+1} = y_t \lambda \eta_t v_t$; 11:
- 12:
- Given a ρ -strongly convex mirror function ψ_t ; Update $x_{t+1} = \arg \min_{x \in \mathcal{X}} \left\{ \langle w_t, x \rangle + h(x) + \frac{1}{\gamma} D_{\psi_t}(x, x_t) \right\};$ 13:
- 14: end for
- 15: **Output:** Uniformly and randomly choose from $\{x_t, y_t\}_{t=1}^T$.

- Enhanced Bilevel Optimization via Bregman Distance
- Convergence Properties
- Experimental Results
- Conclusions

Convergence Properties

Table 1: Comparisons of the representative bilevel optimization algorithms for finding an ϵ -stationary point of the **deterministic** nonconvex-strongly-convex Problem (1) with h(x) or without h(x), *i.e.*, $\|\nabla F(x)\|^2 \leq \epsilon$ or its equivalent variants. $Gc(f, \epsilon)$ and $Gc(g, \epsilon)$ denote the number of gradient evaluations w.r.t. f(x, y) and g(x, y); $JV(g, \epsilon)$ denotes the number of Jacobian-vector products; $HV(g, \epsilon)$ is the number of Hessian-vector products; $\kappa = L/\mu$ is the conditional number. $\sqrt{}$ means that the algorithms solve both the **smooth** and **nonsmooth** bilevel optimizations.

Algorithm	Reference	$Gc(f,\epsilon)$	$Gc(g,\epsilon)$	$JV(g,\epsilon)$	$HV(g,\epsilon)$	Nonsmooth
AID-BiO	[11]	$O(\kappa^4 \epsilon^{-1})$	$O(\kappa^5 \epsilon^{-5/4})$	$O(\kappa^4 \epsilon^{-1})$	$O(\kappa^{4.5}\epsilon^{-1})$	
AID-BiO	[22]	$O(\kappa^3 \epsilon^{-1})$	$O(\kappa^4 \epsilon^{-1})$	$O(\kappa^3 \epsilon^{-1})$	$O(\kappa^{3.5}\epsilon^{-1})$	
ITD-BiO	[22]	$O(\kappa^3 \epsilon^{-1})$	$\tilde{O}(\kappa^4 \epsilon^{-1})$	$\tilde{O}(\kappa^4 \epsilon^{-1})$	$\tilde{O}(\kappa^4 \epsilon^{-1})$	
BiO-BreD	Ours	$O(\kappa^2 \epsilon^{-1})$	$\tilde{O}(\kappa^3 \epsilon^{-1})$	$\tilde{O}(\kappa^3 \epsilon^{-1})$	$\tilde{O}(\kappa^3 \epsilon^{-1})$	\checkmark

$$\min_{x \in \mathcal{X} \subseteq \mathbb{R}^{d_1}} f(x, y^*(x)) + h(x),$$

s.t. $y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_2}} g(x, y),$

Convergence Properties

Table 2: Comparisons of the representative bilevel optimization algorithms for finding an ϵ -stationary point of the **stochastic** nonconvex-strongly-convex problem (2) with h(x) or without h(x), *i.e.*, $\mathbb{E} \|\nabla F(x)\|^2 \leq \epsilon$ or its equivalent variants. Since some algorithms do not provide the explicit dependence on κ , we use $p(\kappa)$.

Algorithm	Reference	$Gc(f,\epsilon)$	$Gc(g, \epsilon)$	$JV(g,\epsilon)$	$HV(g,\epsilon)$	Nonsmooth
TTSA	15	$O(p(\kappa)\epsilon^{-2.5})$	$O(p(\kappa)\epsilon^{-2.5})$	$O(p(\kappa)\epsilon^{-2.5})$	$O(p(\kappa)\epsilon^{-2.5})$	
STABLE	5	$O(p(\kappa)\epsilon^{-2})$	$O(p(\kappa)\epsilon^{-2})$	$O(p(\kappa)\epsilon^{-2})$	$O(p(\kappa)\epsilon^{-2})$	
SMB	13	$O(p(\kappa)\epsilon^{-2})$	$O(p(\kappa)\epsilon^{-2})$	$O(p(\kappa)\epsilon^{-2})$	$O(p(\kappa)\epsilon^{-2})$	
VRBO	[41]	$O(p(\kappa)\epsilon^{-1.5})$	$O(p(\kappa)\epsilon^{-1.5})$	$O(p(\kappa)\epsilon^{-1.5})$	$O(p(\kappa)\epsilon^{-1.5})$	
SUSTAIN	[23]	$O(p(\kappa)\epsilon^{-1.5})$	$O(p(\kappa)\epsilon^{-1.5})$	$O(p(\kappa)\epsilon^{-1.5})$	$O(p(\kappa)\epsilon^{-1.5})$	
VR-saBiAdam	18	$O(p(\kappa)\epsilon^{-1.5})$	$O(p(\kappa)\epsilon^{-1.5})$	$O(p(\kappa)\epsilon^{-1.5})$	$O(p(\kappa)\epsilon^{-1.5})$	
BSA	[11]	$O(\kappa^6 \epsilon^{-2})$	$O(\kappa^9 \epsilon^{-3})$	$O(\kappa^6 \epsilon^{-2})$	$\tilde{O}(\kappa^{6}\epsilon^{-2})$	
stocBiO	[22]	$O(\kappa^5 \epsilon^{-2})$	$O(\kappa^9 \epsilon^{-2})$	$O(\kappa^5 \epsilon^{-2})$	$\tilde{O}(\kappa^{6}\epsilon^{-2})$	
SBiO-BreD	Ours	$O(\kappa^5 \epsilon^{-2})$	$O(\kappa^5 \epsilon^{-2})$	$O(\kappa^5 \epsilon^{-2})$	$\tilde{O}(\kappa^{6}\epsilon^{-2})$	\checkmark
ASBiO-BreD	Ours	$O(\kappa^5 \epsilon^{-1.5})$	$O(\kappa^5 \epsilon^{-1.5})$	$O(\kappa^5 \epsilon^{-1.5})$	$ ilde{O}(\kappa^6\epsilon^{-1.5})$	\checkmark

$$\min_{x \in \mathcal{X} \subseteq \mathbb{R}^{d_1}} \mathbb{E}_{\xi \sim \mathcal{D}} \left[f(x, y^*(x); \xi) \right] + h(x),$$

s.t. $y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_2}} \mathbb{E}_{\zeta \sim \mathcal{D}'} \left[g(x, y; \zeta) \right],$

- Enhanced Bilevel Optimization via Bregman Distance
- Convergence Properties
- Experimental Results
- Conclusions

(1) Data Hyper-cleaning

$$\begin{split} \min_{\lambda} \ l_{val}\big(\lambda, w^*(\lambda)\big) &:= \frac{1}{|D_{\mathcal{V}}|} \sum_{\substack{(x_i, y_i) \in D_{\mathcal{V}}}} l\big(x_i^T w^*(\lambda), y_i\big) \\ \text{s.t.} \ w^*(\lambda) &= \arg\min_{w} \ l_{tr}(\lambda, w) := \frac{1}{|D_{\mathcal{T}}|} \sum_{\substack{(x_i, y_i) \in D_{\mathcal{T}}}} \sigma(\lambda_i) l(x_i^T w, y_i) + C \|w\|^2, \end{split}$$

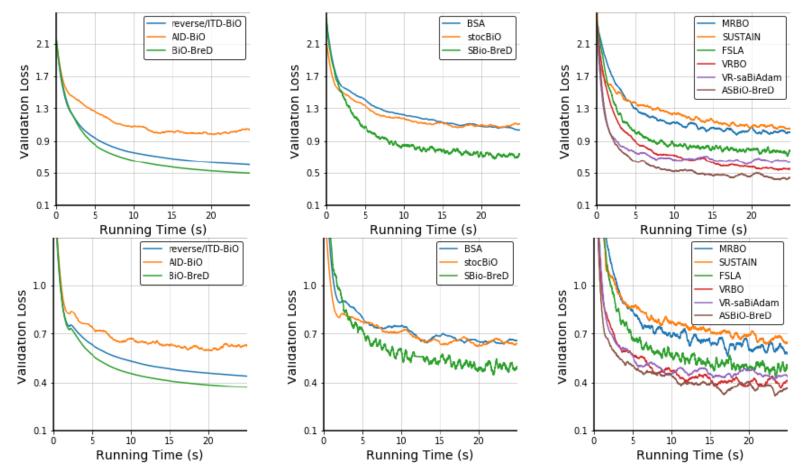


Figure 1: Validation Loss vs. Running Time for different methods. We compare our BiO-BreD with deterministic baselines (the first column), SBiO-BreD with stochastic baselines (the second column); ASBiO-BreD with momentum-based or SPIDER/SARAH based baselines (the last column). We test two values of ρ : large noise setting $\rho = 0.8$ (top row) and small noise setting $\rho = 0.4$ (bottom row).

(2) Hyper-representation Learning

$$\min_{\lambda} l_{val}(\lambda, w^*(\lambda)) := \mathbb{E}_{\xi} \Big[\frac{1}{|D_{\mathcal{V},\xi}|} \sum_{\substack{(x_i, y_i) \in D_{\mathcal{V},\xi} \\ (x_i, y_i) \in D_{\mathcal{V},\xi}}} l\Big(w^*_{\xi}(\lambda)^T \phi(x_i; \lambda), y_i\Big); \xi \Big] + \alpha \|\lambda\|_1$$

s.t. $w^*_{\xi}(\lambda) = \arg\min_{w} l_{tr}(\lambda, w; \xi) := \frac{1}{|D_{\mathcal{T},\xi}|} \sum_{\substack{(x_i, y_i) \in D_{\mathcal{T},\xi} \\ (x_i, y_i) \in D_{\mathcal{T},\xi}}} l\Big(w^T \phi(x_i; \lambda), y_i\Big) + C \|w\|^2,$

Table 3: Validation accuracy vs. Running Time (5-way-1-shot) for different methods (with L_1 regularization)

Time	AID_BiO	ITD_BiO	MRBO	FSLA	VRBO	VR-saBiAdam	ASBiO-BreD
20s	0.6509	0.6411	0.6103	0.6539	0.5951	0.6812	0.6653
40s	0.7365	0.7210	0.6971	0.7399	0.6805	0.7141	0.7403
60s	0.7762	0.7721	0.7519	0.7661	0.7429	0.7523	0.7830

Table 4: Validation accuracy vs. Running Time (5-way-5-shot) for different methods (with L_1 regularization)

Time	AID_BiO	ITD_BiO	MRBO	FSLA	VRBO	VR-saBiAdam	ASBiO-BreD
20s	0.8316	0.8131	0.8174	0.7993	0.7730	0.7753	0.8529
40s	0.8779	0.8621	0.8634	0.8485	0.8305	0.8188	0.8967
60s	0.9032	0.8968	0.8819	0.8824	0.8745	0.8640	0.9313

- Enhanced Bilevel Optimization via Bregman Distance
- Convergence Properties
- Experimental Results
- Conclusions

Conclusions

 1) We proposed a class of enhanced bilevel optimization methods based on Bregman distance.

2) We provided a comprehensive convergence analysis framework for our methods, and proved that our methods achieve a lower computational complexity than the best known results.

Thanks! Q&A