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Stochastic Optimization Problem

min 7(x) = E-[f(x.2)]

Averaged Loss f(x) Constraint K
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Constrained Langevin Algorithms

Gradient descent + Additive noise

Correlated
Next Current  External 1D N(0, /)
State State Data Noise

X1 =T (Xk - anf(\)(mZk) + ;Wk>
Convex Step Loss Inverse
Projection Size  Function Temperature
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Motivation

e Why Langevin algorithms?

* Potential choice for adaptive control, deep neural networks,
reinforcement learning, time series analysis, image
processing and so on

* Impossible to find an algorithm that efficiently solves all the
non-convex optimization problems

® Properly-scaled additive noise assists to escape from local
minima and saddles

¢ Why constraint?
Polyhedral constraint is very common in applications with
box and simplex constraints
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Why L-mixing Processes?

* Minimizing a loss with external random variables is
common

e External random variables are not necessarily 11D

* The class of L-mixing processes was introduced in
(Gerencsér, 1989) for system identification and time-series
analysis

e The class of L-mixing processes gives a means to
quantitatively measure how the dependencies between the
random variables decay over time
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Related Work

Optimization
e |nitial work: Gelfand and Mitter (1991); Borkar and Mitter (1999)

¢ Unconstrained: Raginsky, Rakhlin, and Telgarsky (2017); Chau
et al. (2021)

¢ Constrained: Lamperski (2021); Sato et al. (2022)
Sampling
¢ |nitial work: Roberts, Tweedie, et al. (1996)

e Strongly log-concave: Dalalyan (2017); Durmus, Moulines, et al.
(2017)

¢ Only log-concave: Dalalyan, Karagulyan, and Riou-Durand
(2019); Mou et al. (2019)

¢ Non log-concave: Majka, Mijatovi¢, Szpruch, et al. (2020); Zou,
Xu, and Gu (2021)

e Constrained: Bubeck, Eldan, and Lehec (2015); Bubeck, Eldan,
and Lehec (2018); Hsieh et al. (2018); Ahn and Chewi (2020);
Zhang et al. (2020)
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Related Work

Learning
® Bayesian learning: Welling and Teh (2011)

¢ |ID external variables: Raginsky, Rakhlin, and Telgarsky (2017);
Lamperski (2021)

¢ Dependent external variables: Chau et al. (2021)

¢ Advanced Langevin algorithms: Girolami and Calderhead
(2011); Ahn, Korattikara, and Welling (2012); Ma, Chen, and Fox
(2015); Kim, Song, and Liang (2020)
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Result & Comparison

Theorem 1

Assume that ) < min {}, 2 }, K is a polyhedron with 0 in its interior,
Xo € K, and E[||X0||?] < <. There are constants a, ¢y, ¢z, ¢z, and ¢4
such that the following bound holds for all integers k > 4:

Wi (L(%k), 7g7) < (1 + C21/5)€™ "™ + (3 + Cay/5)y/m log(n~1).

In particular, if n = &, T >4 and T > €2, then

C3 + C4/S\ —
W1(£(XT)77TB1_‘) < <C1 + CZ\/E+ (2a)1/\2/>) T Re |Og T.

: —Bf(x)
Gibbs distribution: 7 ,-(A) — Janx e~ _Tlax

Bt e e— BT(X) gx
Constraint RV Convergence Rate
Our work noncompact | L-mixing O(T-"2log T)

Chau et al. (2021) | unconstrained | L-mixing | O(T~"/?(log T)!/?)
Lamperski (2021) compact 1D O(T"/*(log T)'/?)
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