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Stochastic Optimization Problem

min
x∈K

f̄ (x) = Ez [f (x , z)]

Averaged Loss f̄ (x)
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Constrained Langevin Algorithms

Gradient descent + Additive noise

xk+1 = ΠK
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Motivation

• Why Langevin algorithms?
• Potential choice for adaptive control, deep neural networks,

reinforcement learning, time series analysis, image
processing and so on

• Impossible to find an algorithm that efficiently solves all the
non-convex optimization problems

• Properly-scaled additive noise assists to escape from local
minima and saddles

• Why constraint?
Polyhedral constraint is very common in applications with
box and simplex constraints
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Why L-mixing Processes?

• Minimizing a loss with external random variables is
common

• External random variables are not necessarily IID
• The class of L-mixing processes was introduced in

(Gerencsér, 1989) for system identification and time-series
analysis

• The class of L-mixing processes gives a means to
quantitatively measure how the dependencies between the
random variables decay over time
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https://www.kaggle.com/datasets/rohanrao/nifty50-stock-market-data
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Related Work
Optimization
• Initial work: Gelfand and Mitter (1991); Borkar and Mitter (1999)
• Unconstrained: Raginsky, Rakhlin, and Telgarsky (2017); Chau

et al. (2021)
• Constrained: Lamperski (2021); Sato et al. (2022)

Sampling
• Initial work: Roberts, Tweedie, et al. (1996)
• Strongly log-concave: Dalalyan (2017); Durmus, Moulines, et al.

(2017)
• Only log-concave: Dalalyan, Karagulyan, and Riou-Durand

(2019); Mou et al. (2019)
• Non log-concave: Majka, Mijatović, Szpruch, et al. (2020); Zou,

Xu, and Gu (2021)
• Constrained: Bubeck, Eldan, and Lehec (2015); Bubeck, Eldan,

and Lehec (2018); Hsieh et al. (2018); Ahn and Chewi (2020);
Zhang et al. (2020)
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Related Work

Learning
• Bayesian learning: Welling and Teh (2011)

• IID external variables: Raginsky, Rakhlin, and Telgarsky (2017);
Lamperski (2021)

• Dependent external variables: Chau et al. (2021)

• Advanced Langevin algorithms: Girolami and Calderhead
(2011); Ahn, Korattikara, and Welling (2012); Ma, Chen, and Fox
(2015); Kim, Song, and Liang (2020)
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Result & Comparison

Theorem 1

Assume that η ≤ min
{ 1

4 ,
µ

4ℓ2

}
, K is a polyhedron with 0 in its interior,

x0 ∈ K, and E[∥x0∥2] ≤ ς. There are constants a, c1, c2, c3, and c4
such that the following bound holds for all integers k ≥ 4:

W1(L(xk ), πβ f̄ ) ≤ (c1 + c2
√
ς)e−ηak + (c3 + c4

√
ς)
√

η log(η−1).

In particular, if η = log T
2aT , T ≥ 4 and T ≥ e2a, then

W1(L(xT ), πβ f̄ ) ≤
(

c1 + c2
√
ς +

c3 + c4
√
ς

(2a)1/2

)
T−1/2 logT .

Gibbs distribution: πβ f̄ (A) =

∫
A∩K e−β f̄ (x)dx∫
K e−β f̄ (x)dx

Constraint RV Convergence Rate
Our work noncompact L-mixing O(T−1/2 logT )

Chau et al. (2021) unconstrained L-mixing O(T−1/2(logT )1/2)
Lamperski (2021) compact IID O(T−1/4(logT )1/2)
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