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Support/Query Episodic Training based Meta
Learning

A loss function f : H×Z → [0,M](M > 0) is a function over the
product space of hypothesis space H and sample space Z .
Meta learning aims to extract knowledge from n training tasks and
apply it to the unseen task for fast adaptation.
Meta learning theory assumes that the distributions {Di}n

i=1

associated with training tasks and the distribution D of unseen task
are drawn from the same task environment τ , i.e., D,Di ∼ τ .
During meta-train process, a meta-sample S = {Si = S tr

i ∪ S ts
i }n

i=1 is

available, where S tr
i

i.i.d.∼ DK
i of size K is the support set, and

S ts
i

i.i.d.∼ Dq
i of size q is the query set of the i-th training task.

For any meta learning algorithm A, it takes the meta-sample
S = {Si}n

i=1 as input and outputs an inner-task algorithm
A(S) : ∪∞m=1Zm → H.
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Transfer Error and Empirical Multi-Task Error
for Meta Learning

The performance of the learned inner-task algorithm is measured by
the expectation of the generalization error w.r.t. the task environment
τ , which is defined as the transfer error by [9, 2] as follows:

er(A(S), τ) , ED∼τES tr∼DKEz∼D f (A(S)(S tr ), z). (1)

The goal of meta learning theory is thus to give a bound on the
transfer error, based on the empirical multi-task error on the
meta-sample S:

êr(A(S),S) ,
1

n

n∑
i=1

L̂(A(S)(S tr
i ),S ts

i ) =
1

n

n∑
i=1

l(A(S),Si ). (2)
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Our Motivation for Improved Generalization
Bounds

* Key Point: Reveal the Equivalent Relationship between episodic meta
learning and single-task learning

The environment τ can define an induced distribution Dτ ∈M1(Zm),
by setting Dτ (F ) = ED∼τDm(F ) for any measurable set F ⊆ Zm.

Define the estimator l(A(S), S) , L̂(A(S)(S tr ),S ts), where

S = S tr ∪ S ts , S
i.i.d.∼ Dm.

Rewrite the transfer error as er(A(S), τ) = ES∼Dτ l(A(S),S).

The training error l(A(S),S) is the unbiased version of the transfer
error er(A(S), τ) = ES∼Dτ l(A(S),S).

This is similar to the fact that, in single-task learning, the empirical
error f (A(S), z) is the unbiased version of the generalization error
L(A(S),D) = Ez∼D f (A(S), z).
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Meta Learning and Single-Task Learning

Table 1: The equivalence relation between the notations of single-task learning
and modern support/query (S/Q) episodic training based meta learning.

Single-Task Learning S/Q Training based Meta Learning

Sample z ∈ Z S = (z1, ..., zm) ∈ Zm

Training Set S = (z1, ..., zm) ∈ Zm S = (S1, ...,Sn) ∈ (Zm)n

Hypothesis h ∈ H A ∈ A(H,Z)

Algorithm A ∈ A(H,Z) A ∈ A(A(H,Z),Zm)

Learning Task D ∈M1(Z)
D ∈ M1(Zm), typically D =
Dτ is induced by the environ-
ment τ ∈M1(M1(Z)).

Loss Estimator f : H×Z → [0,M] l : A(H,Z)×Zm → [0,M]

Empirical Error L̂(A(S), S) = 1
m

∑m
i=1 f (A(S), zi ) êr(A(S),S) = 1

n

∑n
i=1 l(A(S), Si )

Expected Error L(A(S),D) = Ez∼D f (A(S), z) er(A(S), τ) = ES∼Dτ l(A(S), S)

Probability Bound Dm{S : L(A(S),D)≥B(δ, S)}≤δ Dn{S : R(A(S), τ)≥Π(δ,S)}≤δ
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Uniform Argument Stability of Meta Algorithms

Definition 1.1

Given a meta learning algorithm A, any neighboring meta samples S,S′,
and any training episode S ∈ Zm, we define the uniform argument stability
random variable of A as δA(S,S′; S) = ||A(S)(S)−A(S′)(S)||. A is defined
as a uniform argument β-stable meta learning algorithm if for some β > 0,
we have supS'S′,S δA(S,S′; S) ≤ β or supS'S′,S EAδA(S,S′; S) ≤ β, where
EA denote the expectation w.r.t. the internal randomness of A.

For a meta learning algorithm with SGD method, the internal randomness
of A comes from the randomness of sampling at each iteration.
Note: Since the updated parameter
wt+1 = ProjW [wt − ηt∂wt L̂(A(S)(S tr

it
),S ts

it
)] is related to the whole

episode, we equivalently write R̂(A(S)(S), S) , L̂(A(S)(S tr ),S ts) and the
episode-level SGD update rule is: wt+1 = ProjW [wt − ηt∂wt R(wt , Sit )].
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Pseudo Code of Episodic Meta Learning
Algorithms

Algorithm 1 Episodic Meta Learning
Algorithm

1: Input: training dataset S = {Si}n
i=1 with

Si = {S tr
i , S

ts
i }, # of iterations T , learning

rates ηt (t ∈ [T ]).
2: Initialize: the parameters of DNN w1.
3: for t = 1 to T do
4: Uniformly sample one of n training

episodes with replacement. Let it be the
episode index.

5: wt+1 = ProjW

(
wt − ηt∂R̂(wt ,Sit )

)
6: end for
7: return wT +1

For the metric-learning based ProtoNet [13] and MatchingNet
[15] in classification, hwt is regarded as the feature extractor,

R̂(wt , Sit ) =
1

q

∑
(x,y)∈Sts

it

− log
exp{−d(hwt (x), cy )}∑
k exp{−d(hwt (x), ck )}

,

where ck = 1
Norm

∑
(x,y)∈Str

it
,y=k hwt (x) is the averaged

vector of the sample features in Str
it

with the same class label k;

d(·, ·) is the distance between two feature vectors (e.g. the
Euclidean [13] or Cosine distance [15]). For MetaOptNet [8]:

R̂(wt , Sit ) =
1

q

∑
(x,y)∈Sts

it

− log
exp{λ〈hwt (x), φy 〉}∑
k exp{λ〈hwt (x), φk〉}

,

where {φk}K
k=1 are the parameters of the classifier returned by

supervised learning algorithms (e.g. SVM) on the support set
Str

it
, 〈, 〉 represents the inner product. For MAML [6]:

R̂(wt , Sit ) =
1

q

∑
z∈Sts

it

f (wt −
αt

K

∑
z′∈Str

it

∂f (wt , z′), z).
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Stability Bounds for Nonsmooth Functions with
α-Hölder Continuous Subgradients

Theorem 2.1

∀ fixed S ∈ Zm, let R̂(·, S) be a convex and (α,G)-Hölder smooth function, where
α ∈ [0, 1). Let A be a meta learning algorithm with sampling-with-replacement SGD.
Denote by wj and w ′j the outputs after j(j ∈ [T ]) steps of SGD on S and Si , respectively.

Define RS(w) = n−1∑n
i=1 R̂(w , Si ), ∀w ∈ W. Then ∀S ∈ Zm, EAδA(S,S

′; S) is upper
bounded by

√
2cα
[ T∑

j=1

η2
j E
[
R

2α
1+α
S (wj) + R

2α
1+α

Si (w ′j )
]] 1

2
+
2cα

n

T∑
j=1

ηj

[
R̂

α
1+α (wj ,Si ) + R̂

α
1+α (wj , S

′
i )
]
. (3)

In addition, if R̂(·, S) is bounded by M and the step size ηj = η ∀j ∈ [T ],
we can obtain the lower and upper bounds of the uniform argument stability of A:
cαM

α
1+α (min{1, T

n
}η
√

T+ ηT
n
) ≤ supS,S′,S EAδA(S,S

′; S) ≤ 4cαM
α

1+α
(
min{1, T

n
}η
√

T+
ηT
n

)
.
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Stability Bounds for Smooth Function

Theorem 2.2

∀ fixed S ∈ Zm, let R̂(·, S) be a G-smooth convex function. Let A be a meta learning algorithm
with sampling-with-replacement SGD. Denote by wj and w ′j the outputs after j(j ∈ [T ]) steps of

SGD on neighboring meta samples S and Si , respectively. Then ∀S ∈ Zm, ηj ≤ 2/G,

EA||A(S)(S)− A(Si )(S)|| ≤
√

2G

n

T∑
j=1

ηjEA

[√
R̂(wj ,Si ) +

√
R̂(w ′j , S

′
i )
]
.

In addition, if R̂(·, S) is bounded by M, we can obtain the lower and upper bounds of the uniform

argument stability of A: 1
n

∑T
j=1 ηj ≤ supS,S′,S EAδA(S,S′; S) ≤ 2

√
2MG
n

∑T
j=1 ηj .

Theorem 2.3

∀ fixed S ∈ Zm, let R̂(·, S) be a σ-Lipschitz and G-smooth function. Let A be a meta learning
algorithm. Denote by wj and w ′j the outputs after j(j ∈ [T ]) steps of SGD on S and Si ,

respectively. Define the learning rate ηj = a
jG

, ∀j ∈ [T ] with a > 0. Then ∀S ∈ Zm, the lower

and upper stability bounds of A satisfy: T a

6n1+a ≤ supS,S′,S EAδA(S,S′; S) ≤ 11 ln (n)σT a

n1+a .
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Near Optimal Transfer Error Bound for Meta
Learning with Independent Episodes

Theorem 3.1

Let A ∈ A(A(H,Z),Zm) be a uniform argument β-stable meta algorithm, i.e.,

supS'S′,S EA||A(S)(S) − A(S′)(S)|| ≤ β. For any S ∈ Zm, let R̂(·, S) be [0,M]-valued, and

satisfy one of the two following conditions: (1) R̂(·,S) is convex and (α,G)-Hölder smooth

(α ∈ [0, 1]); (2) R̂(·,S) is σ-Lipschitz and G-smooth. Suppose PA[δA(S,S′; S) > β] ≤ δ0. Then
for any independent task environment τ ∈M1(M1(Z)), any δ ∈ (0, 1), the following holds with
probability at least 1− δ − δ0 over the draw of S and the internal randomness of A:

σαβ ln
1

δ
+

M
√

n

√
ln (1/δ) . er(A(S), τ)− êr(A(S),S) . σαβ ln

n

δ
+

M
√

n

√
ln (1/δ).

Remark 3.2

Our transfer error bound in Theorem 3.1 has three advantages over the bound in Theorem 2 from [2]: (1) [2, Theorem 2] gives
a high-probability upper bound of O(

√
nγ + M/

√
n) for transfer error, where γ is the uniform stability parameter and always

scales as O(1/n); in contrast, our upper bound of O(β ln n + M/
√

n) is improved by replacing the
√

n factor before the stability

parameter with ln n. (2) In [2], the uniform stability γ = O(T
a

a+1 /n), whereas our uniform argument stability β = O(T a/n1+a)

is tighter when T
a

a+1 ≤ n, i.e., when the uniform stability bound γ = O(T
a

a+1 /n) is non-vacuous. (3) Our high-probability
transfer error bound of order O(1/

√
n) is near optimal.
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Theoretical Insights From the Optimal Bound

Remark 3.3

We uncover two limitations of stability-based meta learning theory:
(1) Recall the lower stability bound for meta learning algorithms with con-
vex α-Hölder smooth function (α ∈ [0, 1)) in Theorem 2.1, we find that
the lower transfer error bound in Theorem 3.1 is er(A(S), τ) − êr(A(S),S) &
σα ln (1/δ)cαM

α
1+α (η

√
T + ηT/n) when T ≥ n. This indicates that the lower

transfer error bound is greater than a constant and will not converge to zero with
the increase of n. Thus, the stability-based transfer error bound is vacuous and
cannot provide asymptotic guarantees for convex Hölder smooth functions. (2)
The stability-based transfer error bound of O(1/

√
n) in Theorem 3.1 is near opti-

mal. Such result is consistant with the observation in [10, Section 2] that under
the (i.i.d.) task environment assumption, the term O(1/

√
n) in the generalization

bound is unavoidable. Thus, to obtain sharper generalization bounds for meta
learning (e.g. the bound of O(1/

√
mn) or even O(1/mn)), we need to consider

other stability notions (e.g. [4]), or suppose stronger task relatedness in the envi-
ronment (e.g. [1, 7]), or even drop the task environment assumption (e.g. [3, 14]).
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The Benefits of Support/Query Training over
Traditional ERM Training Strategy

Remark 3.4

Under the independent task environment assumption, we compare our bound of
O(1/

√
n) via S/Q episodic training strategy with other transfer error bounds that

are obtained via traditional ERM strategy over all samples in training tasks. In
detail, the bound from [9, Theorems 2 and 6] via algorithmic stability analysis is
of O(1/m + 1/

√
n); the bounds from [11, Theorem 1] and [12, Theorem 2] via

PAC-Bayes analysis are of O(1/
√

n + 1/
√

m); the bound from [7, Theorem 5] via
covering number analysis is of O(1/

√
nm + 1/

√
m). All of these bounds via ERM

strategy involve a term O(1/
√

m), and such term can be large when m is relatively
small (e.g. m = 5 or m = 10 in the few-shot learning setting). Thus, in terms
of the tightness of transfer error bounds, the S/Q episodic training strategy is
superior to the ERM strategy for meta learning, when m << n. Such result was
also pointed out by [2] and is more rigorously demonstrated in this work.
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Table 2: Different transfer error bounds. All bounds hold under the independent
task environment assumption, with n training tasks and m samples per task. For
the stability-based bounds in [9, 2], γm = O( 1

m ) represents the uniform stability of
an inner-task algorithm. In our bounds, βn = O( 1

n ) represents the uniform
argument stability of a meta learning algorithm.

Existing Works Object Training Strategy Generalization Gap Bounds on Generalization Gap

[7, Theorem 5] H T-ERM er(H, τ)− êr(H,S) O( c1√
nm

+ c2√
m

)

[11, Theorem 1] Q T-ERM er(Q, τ)− êr(Q,S) O( KL(Q||P)√
n

+ EP∼Q KL(Q(Si ,P)||P)√
m

)

[5, Theorem 3] Q T-ERM er(Q, τ)− êr(Q,S) O(
√

KL(Q||P)
n + γm)

[9, Theorem 6] A(S) T-ERM er(A(S), τ)− êr(A(S),S) O(γn
√

n + M√
n

+ γm)

[2, Theorem 1] A(S) S/Q er(A(S), τ)− êr(A(S),S) O(γn
√

n + M√
n

)

Our Theorem 3.1 A(S) S/Q er(A(S), τ)− êr(A(S),S) O(βn ln n + M√
n

)

Our Theorem 3.6 A(S) S/Q er(A(S), τ)− êr(A(S),S) O(βn ln n + M
n )
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Fast-Rate Transfer Error Bound of O( ln n
n ) for

Independent Episodes

Definition 3.5

(Polyak- Lojasiewicz [16]) Any function f :W → R satisfies the Polyak- Lojasiewicz
(PL) condition on W with parameter µ > 0 if for all w ∈ W, f (w) − f (w∗) ≤

1
2µ ||∂0f (w)||22, where w∗ denotes the Euclidean projection of w onto the set of
global minimizer of f in W.

Theorem 3.6

Under the same conditions of Theorem 3.1, for any fixed S ∈ Zm, let R̂(·,S)
additionally satisfy Polyak- Lojasiewicz condition in Definition 3.5. Suppose
PA[δA(S,S′; S) > β] ≤ δ0. Then, there exist c > 0, such that ∀τ ∈M1(M1(Z)),
and any δ ∈ (0, 1), the following holds with probability at least 1− δ− δ0 over the
draw of S and the internal randomness of A:

er(A(S), τ) ≤ (1 + η)êr(A(S),S) + c(1 + 1/η)
(
σαβ ln n +

M

n

)
ln

1

δ
.
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Forest Approximation and Forest Complexity

Definition 3.7

(Forest Approximation [17]) Given a graph Γ, a forest F , and a mapping
φ : V (Γ)→ V (F ), if φ(u) = φ(v) or 〈φ(u), φ(v)〉 ∈ E (F ) for any 〈u, v〉 ∈
E (Γ), we say that (φ,F ) is a forest approximation of Γ. Let Φ(Γ) denote
the set of forest approximations of Γ.

Definition 3.8

(Forest Complexity [17]) Given a graph Γ and any forest approximation
(φ,F ) ∈ Φ(G ) with F consisting of trees {Ti}i∈[k]. Define λ(φ,F ) =∑
〈u,v〉∈E(F )

(
|φ−1(u)| + |φ−1(v)|

)2
+
∑k

i=1 minu∈V (Ti ) |φ−1(u)|2. We call
Λ(Γ) = min(φ,F )∈Φ(Γ) λ(φ,F ) the forest complexity of the graph Γ = (V ,E ).
Here, φ−1(u) is the set of pre-images of the element u.
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Transfer Error Bound for Meta Learning with
Dependent Episodes

Theorem 3.9

Under the same conditions of Theorem 3.1, except that S is a meta sample
of size n with dependency graph Γ. Let the maximum degree of the graph
Γ is 4. Suppose PA[δA(S,S′; S) > β] ≤ δ0. Then, for any environment
τ ∈ M1(M1(Z)), any δ ∈ (0, 1), the following holds with probability at
least 1− δ − δ0 over the draw of S and the internal randomness of A:

er(A(S), τ) ≤ êr(A(S),S) + σαβ
(
4+ 1

)
+
(
2σαβ +

M

n

)√Λ(Γ) ln 1/δ

2
,

When S is an independent sample, the forest complexity Λ(Γ) = n, the
maximum degree 4 = 0, and the above forest-complexity based
generalization bound degenerates to the bound for independent episodes.
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Convergence Analysis of Transfer Error Bounds
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Figure 1: Convergence analysis of generalization gaps for independent tasks.
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(c) MAML, l2 loss

1.0 1.5 2.0 2.5 3.0 3.5 4.0

log# of tasks

0.0

0.5

1.0

1.5

2.0

2.5

E
rr

or

er(A(S), τ)
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Figure 2: Convergence analysis of generalization gaps for dependent tasks.
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Conclusions and Future Works

Our contributions are four-fold:
(1) We provide matching lower and upper stability bounds for modern
meta learning algorithms with general loss functions. The stability bound
for nonsmooth convex functions implies that modern meta learning
algorithms are not stable enough.
(2) We develop a near-optimal high-probability bound of O(1/

√
n) on the

transfer error in meta learning. Such bound is also used to reveal the
advantage of the S/Q episodic strategy for meta learning over the
traditional ERM strategy.
(3) We derive a deformed generalization bound of O(ln n/n) with
additional curvature condition of loss functions.
(4) We obtain the first generalization bound for meta learning with
dependent episodes.
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