# Mirror Descent with Relative Smoothness in Measure Spaces, with application to Sinkhorn and Expectation-Maximization (EM)

Pierre-Cyril Aubin-Frankowski<sup>1</sup>, Anna Korba<sup>2</sup>, Flavien Léger<sup>3</sup>

<sup>1</sup> DI, Ecole normale supérieure, Université PSL, CNRS, INRIA SIERRA, Paris, France <sup>2</sup>CREST, ENSAE, IP Paris <sup>3</sup> INRIA MOKAPLAN Paris

NeurIPS 2022

## **Quick Summary**

- Rigorous proof of convergence of Mirror Descent (MD) under relative smoothness and convexity, in the infinite-dimensional setting of optimization over measure spaces
- New and simple way to derive rates of convergence for Sinkhorn's algorithm as an MD over transport plans
- New expression of Expectation-Maximization (EM) as MD, convergence rates when restricted to the latent distribution, coincides with Lucy-Richardson's algorithm in signal processing

## Optimisation over the space of measures

Let  $\mathcal{X} \subset \mathbb{R}^d$ ,  $\mathcal{M}(\mathcal{X})$  the space of Radon measures on  $\mathcal{X}$ , convex functionals  $\mathcal{F}, \phi: \mathcal{M}(\mathcal{X}) \to \mathbb{R} \cup \{+\infty\}$ , convex  $C \subset \mathcal{M}(\mathcal{X})$ , consider mirror descent:

$$\min_{\mu \in C} \mathcal{F}(\mu)$$

$$\mu_{n+1} = \underset{\nu \in C}{\operatorname{argmin}} \{ d^{+} \mathcal{F}(\mu_{n})(\nu - \mu_{n}) + LD_{\phi}(\nu | \mu_{n}) \} \tag{1}$$

Under which assumptions does it converge and at which rate?

# Examples of optimization of measures

The "Kullback-Leibler divergence" or relative entropy is

$$\mathsf{KL}(\mu|ar{\mu}) = \left\{ egin{array}{ll} \int_{\mathbb{R}^d} \log\left(rac{\mu}{ar{\mu}}(x)
ight) d\mu(x) & ext{if } \mu \ll ar{\mu} \\ +\infty & ext{else.} \end{array} 
ight.$$

Entropic optimal transport

Expectation-Maximization

$$\min_{q\in\mathcal{Q}}\mathsf{KL}(ar{
u}|p_{\mathcal{Y}}p_q)$$
 with the observations  $ar{
u}$ 

 $\min_{\pi \in \Pi(\mu,\nu)} \mathsf{KL}(\pi|R)$  for  $R \propto \exp(-c(x,y)/\epsilon)\mu \otimes \nu$ 

Bayesian inference

$$\min_{\mu \in \mathcal{P}(\mathcal{X})} \mathsf{KL}(\mu | \bar{\mu})$$
 with the posterior  $\bar{\mu} \propto \mathsf{exp}(-V)$ 

Optimization of 1-hidden layer neural network

$$\min_{\mu \in C} \mathsf{MMD}^2(\mu|\bar{\mu})$$

### Definitions of derivatives

$$\mu_{n+1} = \underset{\nu \in C}{\operatorname{argmin}} \{ d^{+} \mathcal{F}(\mu_{n})(\nu - \mu_{n}) + LD_{\phi}(\nu | \mu_{n}) \}$$

The KL does not have a Gâteaux derivative! Need for weaker notions:

(directional derivative) 
$$d^{+}\mathcal{F}(\nu)(\mu) = \lim_{h \to 0^{+}} \frac{\mathcal{F}(\nu + h\mu) - \mathcal{F}(\nu)}{h}, \qquad (2)$$
(first variation) 
$$\langle \nabla_{C}\mathcal{F}(\mu), \xi \rangle = d^{+}\mathcal{F}(\mu)(\xi) \quad \xi + \mu \in \text{dom}(\mathcal{F}) \cap C, \qquad (3)$$
(Bregman divergence) 
$$D_{\phi}(\nu|\mu) = \phi(\nu) - \phi(\mu) - d^{+}\phi(\mu)(\nu - \mu). \qquad (4)$$

# Convergence result for mirror descent under relative smoothness

 $\mathcal{F}$  is L-smooth relative to  $\phi$  over C for  $L \geq 0$  if, for any  $\mu, \nu \in C \cap \text{dom}(\mathcal{F}) \cap \text{dom}(\phi)$ ,

$$\mathcal{D}_{\mathcal{F}}(
u|\mu) = \mathcal{F}(
u) - \mathcal{F}(\mu) - \mathcal{d}^+\mathcal{F}(\mu)(
u - \mu) \leq \mathsf{L}\mathcal{D}_\phi(
u|\mu).$$

Conversely,  $\mathcal{F}$  is *I*-strongly convex relative to  $\phi$ , for  $I \geq 0$ , if we have

$$D_{\mathcal{F}}(\nu|\mu) \geq ID_{\phi}(\nu|\mu).$$

#### Theorem 1

Assume that  $\mathcal{F}$  is I-strongly convex and L-smooth relative to  $\phi$ , with I,  $L \geq 0$ . Consider the mirror descent scheme (1), and assume that for each  $n \geq 0$ ,  $\nabla_C \phi(\mu_n)$  exists. Then for all  $n \geq 0$  and all  $\nu \in C \cap \text{dom}(\mathcal{F}) \cap \text{dom}(\phi)$ :

$$\mathcal{F}(\mu_n) - \mathcal{F}(\nu) \leq \frac{ID_{\phi}(\nu|\mu_0)}{\left(1 + \frac{1}{I-I}\right)^n - 1} \leq \frac{L}{n}D_{\phi}(\nu|\mu_0)$$

## Entropic optimal transport and Sinkhorn

Entropic optimal transport  $\min_{\pi \in \Pi(\bar{\mu},\bar{\nu})} \mathsf{KL}(\pi|e^{-c/\epsilon}\bar{\mu} \otimes \bar{\nu})$ 

The Sinkhorn algorithm in its primal formulation does alternative (entropic) projections on  $\Pi(\bar{\mu},*)$  and  $\Pi(*,\bar{\nu})$ , i.e. initializing with  $\pi_0 \in \Pi_c$ , iterate

$$\pi_{n+\frac{1}{2}} = \underset{\pi \in \Pi(\bar{u},*)}{\operatorname{argmin}} \mathsf{KL}(\pi|\pi_n), \tag{5}$$

$$\pi_{n+1} = \underset{\pi \in \Pi(*,\bar{\nu})}{\operatorname{argmin}} \operatorname{KL}(\pi | \pi_{n+\frac{1}{2}}). \tag{6}$$

For  $c \in L^{\infty}$ , define  $C = \Pi(*, \bar{\nu})$  and the objective function  $F_{S}(\pi) = \mathsf{KL}(p_{\chi}\pi|\bar{\mu})$ .

The Sinkhorn iterations can be written as a mirror descent with objective  $F_S$  and Bregman divergence KL over the constraint  $C = \Pi(*, \bar{\nu})$ , with  $\nabla F_S(\pi_n) = \ln(d\mu_n/d\bar{\mu}) \in L^\infty(\mathcal{X} \times \mathcal{Y})$ ,  $\mu_n = p_{\mathcal{X}}\pi_n$ 

$$\pi_{n+1} = \operatorname{argmin} \langle \nabla F_{S}(\pi_n), \pi - \pi_n \rangle + \mathsf{KL}(\pi | \pi_n)$$
 (7)

# Entropic optimal transport and Sinkhorn (cont.)

The functional  $F_S(\pi) = \mathsf{KL}(p_{\chi}\pi|\bar{\mu})$  is convex and is 1-relatively smooth w.r.t. KL over  $\mathcal{P}(\mathcal{X} \times \mathcal{Y}).$ 

$$D_c:=rac{1}{2}\sup_{x,y,x',y'}[c(x,y)+c(x',y')-c(x,y')-c(x',y)].$$
 For  $ilde{\pi},\pi\in\Pi_c\cap C$ , we have that

i.e.  $F_S$  is  $(1+4e^{3D_c/\epsilon})^{-1}$ -relatively strongly convex w.r.t. KL over  $\Pi_c \cap C$  (cyclically invariant).

 $\mathsf{KL}(\tilde{\pi}|\pi) < (1 + 4e^{3D_c/\epsilon})\,\mathsf{KL}(p_{\chi}\tilde{\pi}|p_{\chi}\pi),$ 

For all n > 0, the Sinkhorn algorithm is a mirror descent and verifies, for  $\pi_*$  the optimum of EOT and  $\mu_*$  its first marginal,

 $\mathsf{KL}(\mu_n|\mu_*) \leq \frac{\mathsf{KL}(\pi_*|\pi_0)}{(1+4e^{\frac{3Dc}{\epsilon}})\left(\left(1+4e^{-\frac{3D_c}{\epsilon}}\right)^n-1\right)} \leq \frac{\mathsf{KL}(\pi_*|\pi_0)}{n}.$ 

i.e. 
$$F_S$$
 is  $(1 + 4e^{3D_c/\epsilon})^{-1}$ -relatively strongly convex w.r.t. KL over  $\Pi_c \cap C$  (cyclically invariant).

For all  $n > 0$ , the Sinkhorn algorithm is a mirror descent and verifies, for  $\pi_*$  the optimum of the strong strong

#### EM and latent EM

We posit a joint distribution  $p_q(dx, dy)$  parametrized by an element q of some given set Q. For  $p_{\mathcal{V}}p_{q}(dy) = \int_{\mathcal{V}} p_{q}(dx, dy)$ , the goal is to infer q by solving

$$\min_{q\in\mathcal{Q}}\mathsf{KL}(\bar{\nu}|p_{\mathcal{Y}}p_{q}),$$

EM then proceeds by alternate minimizations of  $KL(\pi, p_q)$ :

$$q_n=$$
 argmin  $\mathsf{KL}(\pi_n|p_q),$ 

 $\pi_{n+1} = \operatorname{argmin} \operatorname{KL}(\pi|p_{q_n}).$ 

 $\pi_{n+1} = \operatorname{argmin} \langle \nabla F_{\mathsf{FM}}(\pi_n), \pi - \pi_n \rangle + \mathsf{KL}(\pi | \pi_n)$ 

$$\pi{\in}\Pi(*,ar{
u})$$

Define the constraint set 
$$C = \Pi(*, \bar{\nu})$$
 and  $F_{EM}(\pi) = \inf_{\alpha \in \mathcal{Q}} \mathsf{KL}(\pi|p_{\alpha})$ .

FM is a mirror descent with 
$$\nabla F_{\text{EM}}(\pi_{\tau}) = \ln(d\pi_{\tau}/d\rho_{\tau})$$

EM is a mirror descent, with 
$$\nabla F_{\text{EM}}(\pi_n) = \ln(d\pi_n/dp_{q_n})$$
,

is a mirror descent, with 
$$\nabla F_{\mathsf{EM}}(\pi_n) = \ln(d\pi_n/dp_{q_n})$$
,

(11)

(8)

(9)

(10)

## EM and latent EM (cont.)

 $F_{\mathsf{EM}} = \inf_{q \in \mathcal{Q}} \mathsf{KL}(\pi|p_q)$  is in general non-convex.

However, writing  $p_q(dx, dy) = \mu(dx)K(x, dy)$  and optimizing only over its first marginal, i.e.  $q = \mu$ , makes  $F_{EM}$  convex.

Define  $F_{\mathsf{LEM}}(\pi) := \mathsf{KL}(\pi|p_{\mathcal{X}}\pi \otimes K) = \inf_{\mu \in \mathcal{P}(\mathcal{X})} \mathsf{KL}(\pi|\mu \otimes K)$ 

Latent EM can be written as mirror descent with objective  $F_{LEM}$ , Bregman potential  $\phi_e$  and the constraints  $C = \Pi(*, \bar{\nu})$ ,

$$\pi_{n+1} = \operatorname{argmin} \langle \nabla F_{\mathsf{LEM}}(\pi_n), \pi - \pi_n \rangle + \mathsf{KL}(\pi | \pi_n)$$
 (12)

Set  $\mu_* \in \operatorname{argmin}_{\mu \in \mathcal{P}(\mathcal{X})} \mathsf{KL}(\bar{\nu}|T_K(\mu))$  where  $T_K : \mu \in \mathcal{P}(\mathcal{X}) \mapsto \int_{\mathcal{X}} \mu(\mathsf{d}x) K(x,\cdot) \in \mathcal{M}(\mathcal{Y})$ . The functional  $F_{\mathsf{LEM}}$  is convex and 1-smooth relative to  $\phi_e$ . For  $\pi_0 \in \Pi(*,\bar{\nu})$ ,

$$\mathsf{KL}(\bar{\nu}|T_{\mathsf{K}}\mu_{n}) \leq \mathsf{KL}(\bar{\nu}|T_{\mathsf{K}}\mu_{*}) + \frac{\mathsf{KL}(\mu_{*}|\mu_{0}) + \mathsf{KL}(\bar{\nu}|T_{\mathsf{K}}\mu_{*}) - \mathsf{KL}(\bar{\nu}|T_{\mathsf{K}}\mu_{0})}{n}. \tag{13}$$