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Quick Summary
@ Rigorous proof of convergence of Mirror Descent (MD) under relative smoothness and
convexity, in the infinite-dimensional setting of optimization over measure spaces

@ New and simple way to derive rates of convergence for Sinkhorn’s algorithm as an MD
over transport plans

@ New expression of Expectation-Maximization (EM) as MD, convergence rates when
restricted to the latent distribution, coincides with Lucy-Richardson’s algorithm in signal
processing
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Optimisation over the space of measures

Let X ¢ RY, M(X) the space of Radon measures on X, convex functionals
F,p: M(X) — RU {400}, convex C C M(X), consider mirror descent:

in F
min (1)

Hnt1 = argergin{d+]:(l~bn)(’/ — fn) + LD¢(VW")} (1)

Under which assumptions does it converge and at which rate?
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Examples of optimization of measures

The “Kullback-Leibler divergence” or relative entropy is

KL(u|7) = { Jre 'Og(%(X)) du(x) ifp<f

+00 else.
@ Entropic optimal transport min;en(u,y) KL(7|R) for R oc exp(—c(xy)/e)u @ v
@ Expectation-Maximization mingeg KL(7|pypq) with the observations
@ Bayesian inference min,ep(x) KL(u|fz) with the posterior ji o exp(—V)
@ Optimization of 1-hidden layer neural network min,cc MMDZ(MW)
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Definitions of derivatives

Bntt = argngin{dﬂ-‘(un)(y ~ #n) + LDy(v|in)}
ve

The KL does not have a Gateaux derivative! Need for weaker notions:

F(v+ hu) — F(v)

(directional derivative) dtFw)(u) = hlin3+ b ) (2)
(first variation) (VoF(u), &) = dtF(u)(&) &+pedom(F)nC, (3)
(Bregman divergence)  Dy(v|u) = ¢(v) — ¢(u) — d* é(u)(v — p). (4)
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Convergence result for mirror descent under relative smoothness

F is L-smooth relative to ¢ over C for L > 0 if, for any p, v € C N dom(F) N dom(¢),
Dr(v|n) = F(v) = F(u) — d"F(u)(v — ) < LDy(v|p).

Conversely, F is I-strongly convex relative to ¢, for [ > 0, if we have

Dr(v|u) = IDs(v|n).

Theorem 1

Assume that F is I-strongly convex and L-smooth relative to ¢, with I, L > 0. Consider the

mirror descent scheme (1), and assume that for each n > 0, V¢¢(un) exists. Then for all
n>0andallv e CnNdom(F)Ndom(e):

Flin) - F0) < m < £Dy(v]uo)
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Entropic optimal transport and Sinkhorn

Entropic optimal transport min KL(7|e"% ‘i ® )
m€N(f,?)

The Sinkhorn algorithm in its primal formulation does alternative (entropic) projections on
M(fa,*) and M(x, v), i.e. initializing with 7 € Mg, iterate

T,.1 = argmin KL(7|mp), (5)
& meN(a,x)
Tyt = argmin KL(w[m, 1) (6)
TEMN(%,0) 2

For ¢ € L*, define C = l(x, ) and the objective function Fs(7) = KL(px|i).

The Sinkhorn iterations can be written as a mirror descent with objective Fg5 and Bregman
divergence KL over the constraint C = lN(x, v), with VFg(mp) = In(dun/dpi) € L*(X x V),
Un = PxTn

Tne1 = argmin(V Fg(mp), m — mp) + KL(7|mp) (7)
weC
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Entropic optimal transport and Sinkhorn (cont.)

The functional Fg(7) = KL(px|zz) is convex and is 1-relatively smooth w.r.t. KL over
P(X x V).

Dc := supyy x [C(X,¥) + c(x',y') — c(x,y") — ¢(X', y). For &, € M N C, we have that
KL(7|7) < (1 + 4€3Pe/¢) KL(px7|px),

i.e. Fgis (1 + 4e30e/<)~1-relatively strongly convex w.r.t. KL over M, N C (cyclically
invariant).

For all n > 0, the Sinkhorn algorithm is a mirror descent and verifies, for =, the optimum of
EOT and . its first marginal,

KL (i |j12) < - KL(m4|mo) — < K'—(:klﬂo).
(1+4eT)(<1+4e‘TC) —1)
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EM and latent EM

We posit a joint distribution py(dx, dy) parametrized by an element q of some given set Q.

For pypq(dy) = [, pPqg(dx, dy), the goal is to infer q by solving
KL
min KL(7pyPq).
EM then proceeds by alternate minimizations of KL(7, pg):
Qn = argmin KL(7n|pg),

geQ

Tyt = argmin KL(7|pg,)-
weMN(*,7)

Define the constraint set C = N(x, ) and Fgm(7) = infgeg KL(7|pg)-

EM is a mirror descent, with V Fgp(7n) = In(d7mp/dpqg,),

7ne1 = argmin(V Fem(mn), m — mp) + KL(7|7p)
TelC

(8)

(11)
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EM and latent EM (cont.)

Fem = infgeg KL(7|pg) is in general non-convex.
However, writing pq(dx, dy) = u(dx)K(x, dy) and optimizing only over its first marginal, i.e.
g = 1, makes Fgy convex.

Define FLem(m) := KL(7|pxm @ K) = inf ,cp(x) KL(7|p @ K)

Latent EM can be written as mirror descent with objective F gy, Bregman potential ¢ and
the constraints C = MN(x, v),

i1 = 2rgmin(V Fiew (o), 7 — 5a) + KL(rlo) (12)
TE

Set 1. € argmin,,cp vy KL(7| Tk (1)) where Ty : € P(X) = [, p(adX)K(x,-) € M(Y). The
functional F gy is convex and 1-smooth relative to ¢e. For my € M(x*, D),

KL (4| o) + KL(Z| Tk pix) — KL(7| T pro)
n

KL(7| Tkpn) < KL(Z| Tieps) + (13)
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