

Efficient Aggregated Kernel Tests using Incomplete U-statistics Antonin Schrab, Ilmun Kim, Benjamin Guedj, Arthur Gretton

UNIVERSITY COLLEGE LONDON INRIA LONDON YONSEI UNIVERSITY

AggInc

Overview

Three unified testing frameworks:

- Two-sample testing
 - Given samples X₁,..., X_N ~ p & Y₁,..., Y_N ~ q, is p = q ?
 MMD: Maximum Mean Discrepancy 𝔼[h^{MMD}_k]
- Independence testing
 - Given pairs of samples $(X_1, Y_1), \ldots, (X_N, Y_N) \sim r$, is $r = p \otimes q$?
 - HSIC: Hilbert Schmidt Independence Criterion $\mathbb{E}[h_{\nu \ell}^{\mathrm{HSIC}}]$
- Goodness-of-fit testing
 - Given a model score $\nabla \log p(\cdot) \& Y_1, \ldots, Y_N \sim q$, is p = q?
 - **KSD:** Kernel Stein Discrepancy $\mathbb{E}[h_{k}^{\text{KSD}}]$

Adaptive tests: aggregation over a large collection of kernels without paying a significant cost in power

Efficient tests: based on incomplete U-statistics to estimate $\mathbb{E}[h_k]$ by

$$\frac{1}{|\mathcal{D}_N|} \sum_{(i,j)\in\mathcal{D}_N} h_{\mathbf{k}}(Z_i, Z_j),$$

Sobolev ball: function space with unknown smoothness parameter s

Regularity assumption:

- MMDAggInc: p q lies in a Sobolev ball
- **HSICAggInc:** $r p \otimes q$ lies in a Sobolev ball

Uniform separation rates: high test power is guaranteed for

- **MMDAggInc** when $\|p q\|_2$ is larger than:
- **HSICAggInc** when $||r p \otimes q||_2$ is larger than:

$$\left(\frac{|\mathcal{D}_N|/N}{\ln(\ln(|\mathcal{D}_N|/N))}\right)^{-2s/(4s+d)}$$

KSDAggInc: general power guarantees with no regularity assumption

Uniform separation rate analysis

$$\left(\frac{|\mathcal{D}_N|/N}{\ln(\ln(|\mathcal{D}_N|/N))}\right)^{-2s/(4s+d)}$$

- Regime $|\mathcal{D}_N| \asymp N^2$:
 - quadratic-time test
 - uniform separation rate $\left(\frac{N}{\ln \ln N}\right)^{-2s/(4s+d)}$.
 - minimax rate over Sobolev balls, up to $\ln \ln N$ term
 - \bullet adaptive to unknown smoothness parameter ${\it s}$ of Sobolev ball
- Regime $N \lesssim |\mathcal{D}_N| \lesssim N^2$:
 - trade-off between efficiency and rate of convergence
 - incur cost $(N^2/|\mathcal{D}_N|)^{2s/(4s+d)}$ in the minimax rate
 - rate deteriorates from quadratic (minimax) to linear (no guarantee)
- Regime $|\mathcal{D}_N| \lesssim N$:
 - no guarantee that rate converges to 0

AggInc: summary

- Time complexity: chosen by the user (trade-off with power)
- Experiments: consider linear-time AggInc tests
- MMDAggInc & HSICAggInc: outperform the current two-sample and independence state-of-the-art linear-time tests
- KSDAggInc: matches the power obtained by the linear-time state-of-the-art Cauchy RFF test of Huggins and Mackey Huggins and Mackey. Random feature Stein discrepancies. NeurIPS 2018.
- Aggregated quadratic-time tests:

MMDAgg: Schrab et al. MMD Aggregated Two-sample Test. 2021.
HSICAgg: Albert et al. Adaptive test of independence based on HSIC measures. The Annals of Statistics 2022.

KSDAgg: Schrab et al. KSD Aggregated Goodness-of-fit Test. NeurIPS 2022.