
Learning to accelerate simulation and inverse
optimization of PDEs via latent global evolution

NeurIPS 2022
Tailin Wu1, Takashi Maruyama1,2, Jure Leskovec1

1

1 Stanford University
2 NEC

https://tailin.org/

Outline

1. Introduction and preliminaries
2. Method

○ Forward simulation
○ Inverse optimization

3. Experiments

2

1.1 Partial differential equations (PDEs) are important in science and engineering

Subsurface fluid simulation
for oil production

Weather forecasting Aerodynamics for
Rocket

Characteristics:
● Large-scale in size: state dimension of more than millions per time step
● Slow to simulate (requiring up to High Performance Computing, HPC)

3

Equipment
manufacturing

1.2 Classical solvers vs. deep learning-based surrogate models

4

Classical solvers:
Based on Partial Differential Equations (PDEs)

● Pros: (1) First principle-based and interpretable, (2) accurate, (3) have error guarantee.
● Challenges: Slow. Why:

(a) To ensure numerical stability, typically have to use small time intervals
(b) Sometimes have to use implicit method to ensure numerical stability, thus need to solve
millions of implicit equations

Pros and challenges:

Discretize the PDE, then use finite difference,
finite element, etc. to evolve the system

mesh grid
discrete time index

discrete cell id

1.2 Classical solvers vs. deep learning-based surrogate models

5

Deep learning-based surrogate models (e.g. [1-6]):
Pros:

● Directly learn from data, alleviating much engineering efforts.
● Offer speedup via larger spatial/temporal intervals and explicit forward

However, they typically evolve the system in the input space, which can still
be slow and need huge computation (e.g. for millions cells, need to update
each cell at each time step)

[1] Brandstetter, Johannes, Daniel Worrall, and Max Welling.
"Message passing neural PDE solvers." ICLR (2022).
[2] Li, Zongyi, et al. "Fourier neural operator for parametric
partial differential equations." ICLR (2020).
[3] L.Lu, et al. “Learning nonlinear operators via deeponet based
on the universal approximation theorem of operators. Nature
Machine Intelligence 3 (3), 218–229 (2021).”
[4] Z.Li, et al., “Neural operator: Graph kernel network for partial
differential equations,” arXiv preprint arXiv:2003.03485, 2020.
[5] Kochkov, Dmitrii, et al. "Machine learning–accelerated
computational fluid dynamics." Proceedings of the National
Academy of Sciences 118.21 (2021): e2101784118.
[6] K. Um, R. Brand, Y. R. Fei, P. Holl, and N. Thuerey,
“Solver-in-the-loop: Learning from differentiable physics to
interact with iterative pde-solvers,” NeurIPS 2020

Prior reduce-order modeling methods [7-11] are limited in
expressivity and scope

[7] Treuille et al. 2006
[8] Kim et al. 2013
[9] Wiewel et al 2019
[10] Lee et al. 2020
[11] Vlachas et al. 2022

1.3 Present work: Latent Evolution of PDEs (LE-PDE)

We introduce a simple, fast and scalable method to accelerate the forward simulation
and inverse optimization of PDEs, that achieves up to 15x speedup w.r.t. state-of-the-art
deep learning-based models with competitive accuracy.

6

2D turbulent NS equation: 3D turbulent NS equation (4 millions cells):

2.1 Prior methods: forward simulation

7

U0 U1 U2 UT…

?Training:

Inference: Evolve the system in input space

Ut: discretized state of the system at time t
a: static parameters of the system that does not change with time
 (e.g. parameters of PDE, spatially varying diffusion coefficient)
 : boundary condition of the system
 : model to be learned

8

q: Ut→zt, dynamic encoder (CNN + flatten + MLP, can also be GNN + MLP for general mesh).
 zt is a “global” vector.
r: p → zp , static encoder (CNN + flatten + MLP),
g: (zt, zp)→zt+1 latent evolution model (MLP)
h: zt+k→Ut+k, decoder (MLP + CNN with ConvTranspose)

Architecture:

2.2 LE-PDE: architecture

Typically zk has much smaller dimension than Uk, and the latent evolution model g has much less
compute than evolving it in input space, thus achieving speedup.

9

2.3 LE-PDE: learning

Learning objective:

(encourage long-term rollout in input space)

(long-term consistency in
latent space)

All 4 components are trained jointly from scratch

(reconstruction loss)

10

2.4 Inverse optimization: prior methods

U0 U1 U2 UT…

?

Optimize boundary

using gradient descent:

[1] Allen, Kelsey R., et al. "Physical Design using Differentiable Learned
Simulators." arXiv preprint arXiv:2202.00728 (2022).
[2] Zhao, Qingqing, et al. "Learning to Solve PDE-constrained Inverse
Problems with Graph Networks." arXiv preprint arXiv:2206.00711 (2022).

11

2.4 Inverse optimization: LE-PDE

Optimize boundary

using gradient descent:

Since LE-PDE performs the forward simulation in latent space, it can speed up
inverse optimization by speeding up the inner loop’s forward simulation

3. Experiments

We aim to evaluate the following 4 aspects:

(1) Accuracy: does LE-PDE able to learn accurately the long-term evolution of challenging
systems, and compare competitively with state-of-the-art methods?

(2) Speed and scalability: How much can LE-PDE reduce representation dimension and
improving speed, especially with larger systems?

(3) Inverse optimization: Can LE-PDE improve and speed up inverse optimization?

12

3.1. 1D family of nonlinear PDEs

LE-PDE prediction (E2 scenario),

13

starting at k=50 and predict next 200 steps

Challenge:
(1) long-term rollout (200 steps)
(2) Model the shock formation (near x=14)
(3) Also test the model’s generalization to novel PDE
parameters

3.1. 1D family of nonlinear PDEs

14

We compare state of-the-art models of Fourier Neural Operator (FNO), Message passing Neural PDE solver
(MP-PDE), and a classical solver of WEBO5. FNO-RNN is from their original paper, FNO-PF is augmented with
push-forward trick and temporal bundling:

Our LE-PDE achieves competitive accuracy, and speed up by up to 15x (compared to MP-PDE), with
up to 2500/64=39 fold compression

15

PDE:

3.2. 2D Navier-Stokes Equation

capturing detailed
turbulent behavior

3.2. 2D Navier-Stokes Equation

16

Results:

Our LE-PDE achieves competitive accuracy (compared to SOTA of FNO) while achieving significant
speedup and using much less representation dimension.

Turbulent

N: number of training examples; T: total number of time steps; : viscosity for the N-S fluid

Note that FNO-3D is not autoregressive, which directly map input to all output, and cannot extrapolate beyond the time
range it is trained on. Therefore, for runtime, it is more fair to compare LE-PDE with FNO-2D (both autoregressive)

3D Navier-Stokes Equation (flow through the cylinder):

LE-PDE prediction:

17

3.3. 3D Navier-Stokes Equation

3D space is discretized into 256 x 128 x 128 grid, resulting in 4.19 million cells per time step

Cylinder

18

3.3. 3D Navier-Stokes Equation

LE-PDE:
● 840× speedup compared to the ground-truth solver, and 12.3× speedup compared to the

ablation model without latent evolution
● Reduce representation dimension by 130,000-fold

(=256 x 128 x 128 x 4 features)

19

Task: The objective is to let the total amount of smoke pass through the lower outlet be 30%

This problem is challenging because:
● Objective depends on long-term rollout
● Objective very sensitive to boundary configuration
● Boundary mask is True/False, gradient cannot pass through

T=0 T=15 T=30 T=45 T=60 T=70

Initial
Random
Boundary

Optimized
Boundary

with LE-PDE

Optimize inlet and outlet
location Objective: make

the fraction of
smoke passing
through lower
outlet 30%

3.4. Inverse optimization of boundary

20

We compare our model with state-of-the-art
learning-based model Fourier Neural Operator
(FNO), and an ablation of without latent
evolution ():

3.4. Inverse optimization of boundary

We have introduced LE-PDE for forward simulation and inverse optimization of PDEs.
Compared to state-of-the-art deep learning-based models, our LE-PDE:

● significantly speeds up, by up to 15x in speed
● with 7.8x to 130,000x compression in representation, compared to evolving it in input

space (the larger system size the more compression)
● while achieving competitive accuracy

Summary

21

For more, see our paper and project page at
http://snap.stanford.edu/le_pde/, or SCAN the QR code:

We are also looking for collaborators for further developments

http://snap.stanford.edu/le_pde/

