Mean Estimation in High-Dimensional Binary Markov Gaussian Mixture Models

Yihan Zhang and Nir Weinberger

Institute of Science and Technology, Austria and Technion - Israel Institute of Technology, Israel

NeurIPS 2022

• Memory between data samples is ubiquitous

- Memory between data samples is ubiquitous
 - Imaging, meteorology, health care, finance, social science ...

- Memory between data samples is ubiquitous
 - Imaging, meteorology, health care, finance, social science ...
- Statistical inference algorithms from samples with memory are a developed topic

- Memory between data samples is ubiquitous
 - Imaging, meteorology, health care, finance, social science ...
- Statistical inference algorithms from samples with memory are a developed topic
 - Baum-Welch, various message-passing algorithms...

- Memory between data samples is ubiquitous
 - Imaging, meteorology, health care, finance, social science ...
- Statistical inference algorithms from samples with memory are a developed topic
 - Baum-Welch, various message-passing algorithms...
- **But:** Memory improves the performance of statistical inference

- Memory between data samples is ubiquitous
 - Imaging, meteorology, health care, finance, social science ...
- Statistical inference algorithms from samples with memory are a developed topic
 - Baum-Welch, various message-passing algorithms...
- **But:** Memory improves the performance of statistical inference
 - To what extent?

- Memory between data samples is ubiquitous
 - Imaging, meteorology, health care, finance, social science ...
- Statistical inference algorithms from samples with memory are a developed topic
 - Baum-Welch, various message-passing algorithms...
- **But:** Memory improves the performance of statistical inference
 - To what extent?
 - How it interacts with the number of samples? parameters dimension? signal-to-noise?

- Memory between data samples is ubiquitous
 - Imaging, meteorology, health care, finance, social science ...
- Statistical inference algorithms from samples with memory are a developed topic
 - Baum-Welch, various message-passing algorithms...
- **But:** Memory improves the performance of statistical inference
 - To what extent?
 - How it interacts with the number of samples? parameters dimension? signal-to-noise?
- In this talk: estimation in a basic Gaussian model with memory

• Many papers on estimation in Gaussian mixture models (memoryless model) via the method-of-moments (MoM) or Expectation-maximization (EM)

- Many papers on estimation in Gaussian mixture models (memoryless model) via the method-of-moments (MoM) or Expectation-maximization (EM)
- Models with **memory**:

- Many papers on estimation in Gaussian mixture models (memoryless model) via the method-of-moments (MoM) or Expectation-maximization (EM)
- Models with **memory**:
 - [YBW15] analyzed Baum-Welch for Gaussian HMM

- Many papers on estimation in Gaussian mixture models (memoryless model) via the method-of-moments (MoM) or Expectation-maximization (EM)
- Models with **memory**:
 - [YBW15] analyzed Baum-Welch for Gaussian HMM
 - Not minimax optimal in the number of samples, dimension, noise level, and the amount of memory

- Many papers on estimation in Gaussian mixture models (memoryless model) via the method-of-moments (MoM) or Expectation-maximization (EM)
- Models with **memory**:
 - [YBW15] analyzed Baum-Welch for Gaussian HMM
 - Not minimax optimal in the number of samples, dimension, noise level, and the amount of memory
 - Minimax error rates for linear regression with Markovian covariates [Bre+20]

- Many papers on estimation in Gaussian mixture models (memoryless model) via the method-of-moments (MoM) or Expectation-maximization (EM)
- Models with **memory**:
 - [YBW15] analyzed Baum-Welch for Gaussian HMM
 - Not minimax optimal in the number of samples, dimension, noise level, and the amount of memory
 - Minimax error rates for linear regression with Markovian covariates [Bre+20]
 - Linear and logistic regression with general network dependencies [DDP19; Kan+21]

- Many papers on estimation in Gaussian mixture models (memoryless model) via the method-of-moments (MoM) or Expectation-maximization (EM)
- Models with **memory**:
 - [YBW15] analyzed Baum-Welch for Gaussian HMM
 - Not minimax optimal in the number of samples, dimension, noise level, and the amount of memory
 - Minimax error rates for linear regression with Markovian covariates [Bre+20]
 - Linear and logistic regression with general network dependencies [DDP19; Kan+21]
 - Learnability and generalization bounds [Dag+19]

• A binary Markov chain

$$\mathbb{P}[S_0 = 1] = 1/2, \quad S_i = \begin{cases} S_{i-1}, & \text{w.p. } 1 - \delta \\ -S_{i-1}, & \text{w.p. } \delta \end{cases}, \quad i = 1, \dots, n$$

• A binary Markov chain

$$\mathbb{P}[S_0 = 1] = 1/2, \quad S_i = \begin{cases} S_{i-1}, & \text{w.p. } 1 - \delta \\ -S_{i-1}, & \text{w.p. } \delta \end{cases}, \quad i = 1, \dots, n$$

• An unknown mean parameter $\theta_* \in \mathbb{R}^d$ with $\|\theta_*\| = t$

• A binary Markov chain

$$\mathbb{P}[S_0 = 1] = 1/2, \quad S_i = \begin{cases} S_{i-1}, & \text{w.p. } 1 - \delta \\ -S_{i-1}, & \text{w.p. } \delta \end{cases}, \quad i = 1, \dots, n$$

- An unknown mean parameter $\theta_* \in \mathbb{R}^d$ with $\|\theta_*\| = t$
- Observations

$$X_i = S_i \cdot \theta_* + Z_i, \quad Z_i \stackrel{\text{IID}}{\sim} N(0, I_d), \quad i = 1, \dots, n$$

• A binary Markov chain

$$\mathbb{P}[S_0 = 1] = 1/2, \quad S_i = \begin{cases} S_{i-1}, & \text{w.p. } 1 - \delta \\ -S_{i-1}, & \text{w.p. } \delta \end{cases}, \quad i = 1, \dots, n$$

- An unknown mean parameter $\theta_* \in \mathbb{R}^d$ with $\|\theta_*\| = t$
- Observations

$$X_i = S_i \cdot \theta_* + Z_i, \quad Z_i \stackrel{\text{IID}}{\sim} N(0, I_d), \quad i = 1, \dots, n$$

• Local minimax rate: For $d \ge 2$

$$\mathsf{M}(n, d, \delta, t) := \inf_{\hat{\theta}(X_1^n)} \sup_{\|\theta_*\| = t} \mathbb{E} \left[\min\{\|\theta_* - \hat{\theta}(X_1^n)\|, \|\theta_* + \hat{\theta}(X_1^n)\|\} \right]$$

• A binary Markov chain

$$\mathbb{P}[S_0 = 1] = 1/2, \quad S_i = \begin{cases} S_{i-1}, & \text{w.p. } 1 - \delta \\ -S_{i-1}, & \text{w.p. } \delta \end{cases}, \quad i = 1, \dots, n$$

- An unknown mean parameter $\theta_* \in \mathbb{R}^d$ with $\|\theta_*\| = t$
- Observations

$$X_i = S_i \cdot \theta_* + Z_i, \quad Z_i \stackrel{\text{IID}}{\sim} N(0, I_d), \quad i = 1, \dots, n$$

• Local minimax rate: For $d \ge 2$

 $\mathsf{M}(n,d,\delta,t) := \inf_{\hat{\theta}(X_1^n)} \sup_{\|\theta_*\|=t} \mathbb{E}\left[\min\{\|\theta_* - \hat{\theta}(X_1^n)\|, \|\theta_* + \hat{\theta}(X_1^n)\|\}\right]$

• Extremes are solved:

• A binary Markov chain

$$\mathbb{P}[S_0 = 1] = 1/2, \quad S_i = \begin{cases} S_{i-1}, & \text{w.p. } 1 - \delta \\ -S_{i-1}, & \text{w.p. } \delta \end{cases}, \quad i = 1, \dots, n$$

- An unknown mean parameter $\theta_* \in \mathbb{R}^d$ with $\|\theta_*\| = t$
- Observations

$$X_i = S_i \cdot \theta_* + Z_i, \quad Z_i \stackrel{\text{IID}}{\sim} N(0, I_d), \quad i = 1, \dots, n$$

• Local minimax rate: For $d \ge 2$

 $\mathsf{M}(n,d,\delta,t) := \inf_{\hat{\theta}(X_1^n)} \sup_{\|\theta_*\|=t} \mathbb{E}\left[\min\{\|\theta_* - \hat{\theta}(X_1^n)\|, \|\theta_* + \hat{\theta}(X_1^n)\|\}\right]$

- Extremes are solved:
 - Gaussian location model (GLM, $\delta = 0$); Folklore

• A binary Markov chain

$$\mathbb{P}[S_0 = 1] = 1/2, \quad S_i = \begin{cases} S_{i-1}, & \text{w.p. } 1 - \delta \\ -S_{i-1}, & \text{w.p. } \delta \end{cases}, \quad i = 1, \dots, n$$

- An unknown mean parameter $\theta_* \in \mathbb{R}^d$ with $\|\theta_*\| = t$
- Observations

$$X_i = S_i \cdot \theta_* + Z_i, \quad Z_i \stackrel{\text{IID}}{\sim} N(0, I_d), \quad i = 1, \dots, n$$

• Local minimax rate: For $d \ge 2$

 $\mathsf{M}(n,d,\delta,t) := \inf_{\hat{\theta}(X_1^n)} \sup_{\|\theta_*\|=t} \mathbb{E}\left[\min\{\|\theta_* - \hat{\theta}(X_1^n)\|, \|\theta_* + \hat{\theta}(X_1^n)\|\}\right]$

- Extremes are solved:
 - Gaussian location model (GLM, $\delta = 0$); Folklore
 - Gaussian mixture model (GMM, $\delta = \frac{1}{2}$); [WZ19]

$Minimax\ rates-Main\ result$

[This work] Up to log-factors:

• For
$$2 \le d \le \delta n$$

$$\mathsf{M}(n, d, \delta, t) \asymp \begin{cases} t, & t \le \left(\frac{\delta d}{n}\right)^{1/4} \\ \frac{1}{t}\sqrt{\frac{\delta d}{n}}, & \left(\frac{\delta d}{n}\right)^{1/4} \le t \le \sqrt{\delta} \\ \sqrt{\frac{d}{n}}, & t \ge \sqrt{\delta} \end{cases}$$

Minimax rates – Main result

[This work] Up to log-factors:

• For
$$2 \le d \le \delta n$$

$$\mathsf{M}(n, d, \delta, t) \asymp \begin{cases} t, & t \le \left(\frac{\delta d}{n}\right)^{1/4} \\ \frac{1}{t}\sqrt{\frac{\delta d}{n}}, & \left(\frac{\delta d}{n}\right)^{1/4} \le t \le \sqrt{\delta} \\ \sqrt{\frac{d}{n}}, & t \ge \sqrt{\delta} \end{cases}$$

• For $d \ge \delta n$, $\mathsf{M}(n, d, \delta, t) \asymp \mathsf{M}_{\mathrm{GLM}}(n, d, t)$

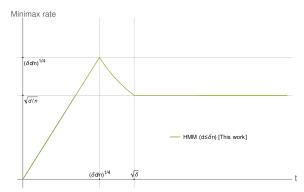
Minimax rates – Main result

[This work] Up to log-factors:

• For
$$2 \le d \le \delta n$$

$$\mathsf{M}(n, d, \delta, t) \asymp \begin{cases} t, & t \le \left(\frac{\delta d}{n}\right)^{1/4} \\ \frac{1}{t}\sqrt{\frac{\delta d}{n}}, & \left(\frac{\delta d}{n}\right)^{1/4} \le t \le \sqrt{\delta} \\ \sqrt{\frac{d}{n}}, & t \ge \sqrt{\delta} \end{cases}$$

• For $d \ge \delta n$, $\mathsf{M}(n, d, \delta, t) \asymp \mathsf{M}_{\mathrm{GLM}}(n, d, t)$



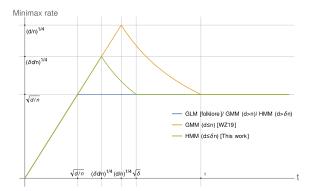
Minimax rates – Main result

[This work] Up to log-factors:

• For
$$2 \le d \le \delta n$$

$$\mathsf{M}(n, d, \delta, t) \asymp \begin{cases} t, & t \le \left(\frac{\delta d}{n}\right)^{1/4} \\ \frac{1}{t}\sqrt{\frac{\delta d}{n}}, & \left(\frac{\delta d}{n}\right)^{1/4} \le t \le \sqrt{\delta} \\ \sqrt{\frac{d}{n}}, & t \ge \sqrt{\delta} \end{cases}$$

• For $d \ge \delta n$, $\mathsf{M}(n, d, \delta, t) \asymp \mathsf{M}_{\mathrm{GLM}}(n, d, t)$



The effect of memory

Global minimax rate $d \lesssim \delta n$	$\Theta\left(\left(\frac{\delta d}{n}\right)^{1/4}\right)$
Minimal SNR for parametric rate $d \lesssim \delta n$	$t\gtrsim\sqrt{\delta}$
Transition to high-dim	$d \asymp \delta n$

• Estimation of δ under an approximation θ_{\sharp}

• Estimation of δ under an approximation θ_{\sharp}

• We propose a MoM estimator, and upper bound its loss

• Estimation of δ under an approximation θ_{\sharp}

- We propose a MoM estimator, and upper bound its loss
- The importance of accurate knowledge of θ_*

- Estimation of δ under an approximation θ_{\sharp}
 - We propose a MoM estimator, and upper bound its loss
 - The importance of accurate knowledge of θ_*
 - Impossibility result for the matched case $\theta_{\sharp} = \theta_*$

- Estimation of δ under an approximation θ_{\sharp}
 - We propose a MoM estimator, and upper bound its loss
 - The importance of accurate knowledge of θ_*
 - Impossibility result for the matched case $\theta_{\sharp} = \theta_*$
- Estimation of θ_* with an unknown δ

- Estimation of δ under an approximation θ_{\sharp}
 - We propose a MoM estimator, and upper bound its loss
 - The importance of accurate knowledge of θ_*
 - Impossibility result for the matched case $\theta_{\sharp} = \theta_*$
- Estimation of θ_* with an unknown δ
 - We propose a three-step algorithm

- Estimation of δ under an approximation θ_{\sharp}
 - We propose a MoM estimator, and upper bound its loss
 - The importance of accurate knowledge of θ_*
 - Impossibility result for the matched case $\theta_{\sharp} = \theta_*$
- Estimation of θ_* with an unknown δ
 - We propose a three-step algorithm
 - We prove that it adaptively achieves minimax rates of known δ at some regimes

Yihan Zhang and Nir Weinberger "Mean Estimation in High-Dimensional Binary Markov Gaussian Mixture Models" arXiv:2206.02455

References I

Bresler, Guy et al. (2020). "Least Squares Regression with Markovian Data: Fundamental Limits and Algorithms". In: Proceedings of the 34th International Conference on Neural Information Processing Systems. NIPS'20. Vancouver, BC, Canada: Curran Associates Inc. ISBN: 9781713829546. Dagan, Yuval et al. (2019). "Learning from weakly dependent data under Dobrushin's condition". In: CoRR abs/1906.09247. arXiv: 1906.09247. URL: http://arxiv.org/abs/1906.09247. Daskalakis, Constantinos, Nishanth Dikkala, and Ioannis Panageas (2019). "Regression from dependent observations". In: STOC'19—Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing. ACM, New York, pp. 881–889.

References II

Kandiros, Vardis et al. (18–24 Jul 2021). "Statistical Estimation from Dependent Data". In: *Proceedings of the 38th International Conference on Machine Learning*. Ed. by Marina Meila and Tong Zhang. Vol. 139. Proceedings of Machine Learning Research. PMLR, pp. 5269–5278. URL: https:

//proceedings.mlr.press/v139/kandiros21a.html.

Wu, Yihong and Harrison H. Zhou (2019). "Randomly initialized EM algorithm for two-component Gaussian mixture achieves near optimality in $O(\sqrt{n})$ iterations". In:

arXiv preprint arXiv:1908.10935.

Yang, Fanny, Sivaraman Balakrishnan, and Martin J. Wainwright (2015). "Statistical and computational guarantees for the Baum-Welch algorithm". In: 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, pp. 658–665.