Mean Estimation in High-Dimensional Binary

 Markov Gaussian Mixture Models
Yihan Zhang and Nir Weinberger

Institute of Science and Technology, Austria and
Technion - Israel Institute of Technology, Israel

NeurIPS 2022

Motivation

- Memory between data samples is ubiquitous

Motivation

- Memory between data samples is ubiquitous
- Imaging, meteorology, health care, finance, social science ...

Motivation

- Memory between data samples is ubiquitous
- Imaging, meteorology, health care, finance, social science ...
- Statistical inference algorithms from samples with memory are a developed topic

Motivation

- Memory between data samples is ubiquitous
- Imaging, meteorology, health care, finance, social science ...
- Statistical inference algorithms from samples with memory are a developed topic
- Baum-Welch, various message-passing algorithms...

Motivation

- Memory between data samples is ubiquitous
- Imaging, meteorology, health care, finance, social science ...
- Statistical inference algorithms from samples with memory are a developed topic
- Baum-Welch, various message-passing algorithms...
- But: Memory improves the performance of statistical inference

Motivation

- Memory between data samples is ubiquitous
- Imaging, meteorology, health care, finance, social science ...
- Statistical inference algorithms from samples with memory are a developed topic
- Baum-Welch, various message-passing algorithms...
- But: Memory improves the performance of statistical inference
- To what extent?

Motivation

- Memory between data samples is ubiquitous
- Imaging, meteorology, health care, finance, social science ...
- Statistical inference algorithms from samples with memory are a developed topic
- Baum-Welch, various message-passing algorithms...
- But: Memory improves the performance of statistical inference
- To what extent?
- How it interacts with the number of samples? parameters dimension? signal-to-noise?

Motivation

- Memory between data samples is ubiquitous
- Imaging, meteorology, health care, finance, social science ...
- Statistical inference algorithms from samples with memory are a developed topic
- Baum-Welch, various message-passing algorithms...
- But: Memory improves the performance of statistical inference
- To what extent?
- How it interacts with the number of samples? parameters dimension? signal-to-noise?
- In this talk: estimation in a basic Gaussian model with memory

Related work - Gaussian mixture model

- Many papers on estimation in Gaussian mixture models (memoryless model) via the method-of-moments (MoM) or Expectation-maximization (EM)

Related work - Gaussian mixture model

- Many papers on estimation in Gaussian mixture models (memoryless model) via the method-of-moments (MoM) or Expectation-maximization (EM)
- Models with memory:

Related work - Gaussian mixture model

- Many papers on estimation in Gaussian mixture models (memoryless model) via the method-of-moments (MoM) or Expectation-maximization (EM)
- Models with memory:
- [YBW15] analyzed Baum-Welch for Gaussian HMM

Related work - Gaussian mixture model

- Many papers on estimation in Gaussian mixture models (memoryless model) via the method-of-moments (MoM) or Expectation-maximization (EM)
- Models with memory:
- [YBW15] analyzed Baum-Welch for Gaussian HMM
- Not minimax optimal in the number of samples, dimension, noise level, and the amount of memory

Related work - Gaussian mixture model

- Many papers on estimation in Gaussian mixture models (memoryless model) via the method-of-moments (MoM) or Expectation-maximization (EM)
- Models with memory:
- [YBW15] analyzed Baum-Welch for Gaussian HMM
- Not minimax optimal in the number of samples, dimension, noise level, and the amount of memory
- Minimax error rates for linear regression with Markovian covariates [Bre+20]

Related work - Gaussian mixture model

- Many papers on estimation in Gaussian mixture models (memoryless model) via the method-of-moments (MoM) or Expectation-maximization (EM)
- Models with memory:
- [YBW15] analyzed Baum-Welch for Gaussian HMM
- Not minimax optimal in the number of samples, dimension, noise level, and the amount of memory
- Minimax error rates for linear regression with Markovian covariates [Bre+20]
- Linear and logistic regression with general network dependencies [DDP19; Kan+21]

Related work - Gaussian mixture model

- Many papers on estimation in Gaussian mixture models (memoryless model) via the method-of-moments (MoM) or Expectation-maximization (EM)
- Models with memory:
- [YBW15] analyzed Baum-Welch for Gaussian HMM
- Not minimax optimal in the number of samples, dimension, noise level, and the amount of memory
- Minimax error rates for linear regression with Markovian covariates [Bre+20]
- Linear and logistic regression with general network dependencies [DDP19; Kan+21]
- Learnability and generalization bounds [Dag+19]

Problem formulation - Statistical model

- A binary Markov chain

$$
\mathbb{P}\left[S_{0}=1\right]=1 / 2, \quad S_{i}=\left\{\begin{array}{ll}
S_{i-1}, & \text { w.p. } 1-\delta \\
-S_{i-1}, & \text { w.p. } \delta
\end{array}, \quad i=1, \ldots, n\right.
$$

Problem formulation - Statistical model

- A binary Markov chain

$$
\mathbb{P}\left[S_{0}=1\right]=1 / 2, \quad S_{i}=\left\{\begin{array}{ll}
S_{i-1}, & \text { w.p. } 1-\delta \\
-S_{i-1}, & \text { w.p. } \delta
\end{array}, \quad i=1, \ldots, n\right.
$$

- An unknown mean parameter $\theta_{*} \in \mathbb{R}^{d}$ with $\left\|\theta_{*}\right\|=t$

Problem formulation - Statistical model

- A binary Markov chain

$$
\mathbb{P}\left[S_{0}=1\right]=1 / 2, \quad S_{i}=\left\{\begin{array}{ll}
S_{i-1}, & \text { w.p. } 1-\delta \\
-S_{i-1}, & \text { w.p. } \delta
\end{array}, \quad i=1, \ldots, n\right.
$$

- An unknown mean parameter $\theta_{*} \in \mathbb{R}^{d}$ with $\left\|\theta_{*}\right\|=t$
- Observations

$$
X_{i}=S_{i} \cdot \theta_{*}+Z_{i}, \quad Z_{i} \stackrel{\text { IID }}{\sim} N\left(0, I_{d}\right), \quad i=1, \ldots, n
$$

Problem formulation - Statistical model

- A binary Markov chain

$$
\mathbb{P}\left[S_{0}=1\right]=1 / 2, \quad S_{i}=\left\{\begin{array}{ll}
S_{i-1}, & \text { w.p. } 1-\delta \\
-S_{i-1}, & \text { w.p. } \delta
\end{array}, \quad i=1, \ldots, n\right.
$$

- An unknown mean parameter $\theta_{*} \in \mathbb{R}^{d}$ with $\left\|\theta_{*}\right\|=t$
- Observations

$$
X_{i}=S_{i} \cdot \theta_{*}+Z_{i}, \quad Z_{i} \stackrel{\mathrm{IID}}{\sim} N\left(0, I_{d}\right), \quad i=1, \ldots, n
$$

- Local minimax rate: For $d \geq 2$

$$
\mathrm{M}(n, d, \delta, t):=\inf _{\hat{\theta}\left(X_{1}^{n}\right)} \sup _{\left\|\theta_{*}\right\|=t} \mathbb{E}\left[\min \left\{\left\|\theta_{*}-\hat{\theta}\left(X_{1}^{n}\right)\right\|,\left\|\theta_{*}+\hat{\theta}\left(X_{1}^{n}\right)\right\|\right\}\right]
$$

Problem formulation - Statistical model

- A binary Markov chain

$$
\mathbb{P}\left[S_{0}=1\right]=1 / 2, \quad S_{i}=\left\{\begin{array}{ll}
S_{i-1}, & \text { w.p. } 1-\delta \\
-S_{i-1}, & \text { w.p. } \delta
\end{array}, \quad i=1, \ldots, n\right.
$$

- An unknown mean parameter $\theta_{*} \in \mathbb{R}^{d}$ with $\left\|\theta_{*}\right\|=t$
- Observations

$$
X_{i}=S_{i} \cdot \theta_{*}+Z_{i}, \quad Z_{i} \stackrel{\mathrm{IID}}{\sim} N\left(0, I_{d}\right), \quad i=1, \ldots, n
$$

- Local minimax rate: For $d \geq 2$

$$
\mathrm{M}(n, d, \delta, t):=\inf _{\hat{\theta}\left(X_{1}^{n}\right)} \sup _{\left\|\theta_{*}\right\|=t} \mathbb{E}\left[\min \left\{\left\|\theta_{*}-\hat{\theta}\left(X_{1}^{n}\right)\right\|,\left\|\theta_{*}+\hat{\theta}\left(X_{1}^{n}\right)\right\|\right\}\right]
$$

- Extremes are solved:

Problem formulation - Statistical model

- A binary Markov chain

$$
\mathbb{P}\left[S_{0}=1\right]=1 / 2, \quad S_{i}=\left\{\begin{array}{ll}
S_{i-1}, & \text { w.p. } 1-\delta \\
-S_{i-1}, & \text { w.p. } \delta
\end{array}, \quad i=1, \ldots, n\right.
$$

- An unknown mean parameter $\theta_{*} \in \mathbb{R}^{d}$ with $\left\|\theta_{*}\right\|=t$
- Observations

$$
X_{i}=S_{i} \cdot \theta_{*}+Z_{i}, \quad Z_{i} \stackrel{\mathrm{IID}}{\sim} N\left(0, I_{d}\right), \quad i=1, \ldots, n
$$

- Local minimax rate: For $d \geq 2$

$$
\mathrm{M}(n, d, \delta, t):=\inf _{\hat{\theta}\left(X_{1}^{n}\right)} \sup _{\left\|\theta_{*}\right\|=t} \mathbb{E}\left[\min \left\{\left\|\theta_{*}-\hat{\theta}\left(X_{1}^{n}\right)\right\|,\left\|\theta_{*}+\hat{\theta}\left(X_{1}^{n}\right)\right\|\right\}\right]
$$

- Extremes are solved:
- Gaussian location model (GLM, $\delta=0$); Folklore

Problem formulation - Statistical model

- A binary Markov chain

$$
\mathbb{P}\left[S_{0}=1\right]=1 / 2, \quad S_{i}=\left\{\begin{array}{ll}
S_{i-1}, & \text { w.p. } 1-\delta \\
-S_{i-1}, & \text { w.p. } \delta
\end{array}, \quad i=1, \ldots, n\right.
$$

- An unknown mean parameter $\theta_{*} \in \mathbb{R}^{d}$ with $\left\|\theta_{*}\right\|=t$
- Observations

$$
X_{i}=S_{i} \cdot \theta_{*}+Z_{i}, \quad Z_{i} \stackrel{\mathrm{IID}}{\sim} N\left(0, I_{d}\right), \quad i=1, \ldots, n
$$

- Local minimax rate: For $d \geq 2$

$$
\mathrm{M}(n, d, \delta, t):=\inf _{\hat{\theta}\left(X_{1}^{n}\right)} \sup _{\left\|\theta_{*}\right\|=t} \mathbb{E}\left[\min \left\{\left\|\theta_{*}-\hat{\theta}\left(X_{1}^{n}\right)\right\|,\left\|\theta_{*}+\hat{\theta}\left(X_{1}^{n}\right)\right\|\right\}\right]
$$

- Extremes are solved:
- Gaussian location model (GLM, $\delta=0$); Folklore
- Gaussian mixture model (GMM, $\delta=\frac{1}{2}$); [WZ19]

Minimax rates - Main result

[This work] Up to log-factors:

- For $2 \leq d \leq \delta n$

$$
\begin{array}{ll}
d \leq \delta n \\
\mathrm{M}(n, d, \delta, t) \asymp & \begin{array}{ll}
t, & t \leq\left(\frac{\delta d}{n}\right)^{1 / 4} \\
\frac{1}{t} \sqrt{\frac{\delta d}{n}}, & \left(\frac{\delta d}{n}\right)^{1 / 4} \leq t \leq \sqrt{\delta} \\
\sqrt{\frac{d}{n}}, & t \geq \sqrt{\delta}
\end{array}
\end{array}
$$

Minimax rates - Main result

[This work] Up to log-factors:

- For $2 \leq d \leq \delta n$

$$
\begin{array}{ll}
d \leq \delta n \\
\mathrm{M}(n, d, \delta, t) \asymp & \begin{array}{ll}
t, & t \leq\left(\frac{\delta d}{n}\right)^{1 / 4} \\
\frac{1}{t} \sqrt{\frac{\delta d}{n}}, & \left(\frac{\delta d}{n}\right)^{1 / 4} \leq t \leq \sqrt{\delta} \\
\sqrt{\frac{d}{n}}, & t \geq \sqrt{\delta}
\end{array}
\end{array}
$$

- For $d \geq \delta n, \mathrm{M}(n, d, \delta, t) \asymp \mathrm{M}_{\mathrm{GLM}}(n, d, t)$

Minimax rates - Main result

[This work] Up to log-factors:

- For $2 \leq d \leq \delta n$

$$
\begin{array}{ll}
d \leq \delta n \\
\mathrm{M}(n, d, \delta, t) \asymp & \begin{array}{ll}
t, & t \leq\left(\frac{\delta d}{n}\right)^{1 / 4} \\
\frac{1}{t} \sqrt{\frac{\delta d}{n}}, & \left(\frac{\delta d}{n}\right)^{1 / 4} \leq t \leq \sqrt{\delta} \\
\sqrt{\frac{d}{n}}, & t \geq \sqrt{\delta}
\end{array}
\end{array}
$$

- For $d \geq \delta n, \mathrm{M}(n, d, \delta, t) \asymp \mathrm{M}_{\mathrm{GLM}}(n, d, t)$

Minimax rates - Main result

[This work] Up to log-factors:

- For $2 \leq d \leq \delta n$

$$
\begin{array}{ll}
d \leq \delta n \\
\mathrm{M}(n, d, \delta, t) \asymp & \begin{array}{ll}
t, & t \leq\left(\frac{\delta d}{n}\right)^{1 / 4} \\
\frac{1}{t} \sqrt{\frac{\delta d}{n}}, & \left(\frac{\delta d}{n}\right)^{1 / 4} \leq t \leq \sqrt{\delta} \\
\sqrt{\frac{d}{n}}, & t \geq \sqrt{\delta}
\end{array}
\end{array}
$$

- For $d \geq \delta n, \mathrm{M}(n, d, \delta, t) \asymp \mathrm{M}_{\mathrm{GLM}}(n, d, t)$

The effect of memory

Global minimax rate $d \lesssim \delta n$	$\Theta\left(\left(\frac{\delta d}{n}\right)^{1 / 4}\right)$
Minimal SNR for parametric rate $d \lesssim \delta n$	$t \gtrsim \sqrt{\delta}$
Transition to high-dim	$d \asymp \delta n$

The case of unknown δ

- Estimation of δ under an approximation θ_{\sharp}

The case of unknown δ

- Estimation of δ under an approximation θ_{\sharp}
- We propose a MoM estimator, and upper bound its loss

The case of unknown δ

- Estimation of δ under an approximation θ_{\sharp}
- We propose a MoM estimator, and upper bound its loss
- The importance of accurate knowledge of θ_{*}

The case of unknown δ

- Estimation of δ under an approximation θ_{\sharp}
- We propose a MoM estimator, and upper bound its loss
- The importance of accurate knowledge of θ_{*}
- Impossibility result for the matched case $\theta_{\sharp}=\theta_{*}$

The case of unknown δ

- Estimation of δ under an approximation θ_{\sharp}
- We propose a MoM estimator, and upper bound its loss
- The importance of accurate knowledge of θ_{*}
- Impossibility result for the matched case $\theta_{\sharp}=\theta_{*}$
- Estimation of θ_{*} with an unknown δ

The case of unknown δ

- Estimation of δ under an approximation θ_{\sharp}
- We propose a MoM estimator, and upper bound its loss
- The importance of accurate knowledge of θ_{*}
- Impossibility result for the matched case $\theta_{\sharp}=\theta_{*}$
- Estimation of θ_{*} with an unknown δ
- We propose a three-step algorithm

The case of unknown δ

- Estimation of δ under an approximation θ_{\sharp}
- We propose a MoM estimator, and upper bound its loss
- The importance of accurate knowledge of θ_{*}
- Impossibility result for the matched case $\theta_{\sharp}=\theta_{*}$
- Estimation of θ_{*} with an unknown δ
- We propose a three-step algorithm
- We prove that it adaptively achieves minimax rates of known δ at some regimes

Yihan Zhang and Nir Weinberger "Mean Estimation in High-Dimensional Binary Markov
 Gaussian Mixture Models"
 arXiv:2206.02455

References I

围 Bresler，Guy et al．（2020）．＂Least Squares Regression with Markovian Data：Fundamental Limits and Algorithms＂．In： Proceedings of the 34th International Conference on Neural Information Processing Systems．NIPS＇20．Vancouver，BC， Canada：Curran Associates Inc．ISBN： 9781713829546.
國 Dagan，Yuval et al．（2019）．＂Learning from weakly dependent data under Dobrushin＇s condition＂．In：CoRR abs／1906．09247．arXiv：1906．09247．URL： http：／／arxiv．org／abs／1906．09247．
围 Daskalakis，Constantinos，Nishanth Dikkala，and Ioannis Panageas（2019）．＂Regression from dependent observations＂．In：STOC＇19－Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing．ACM， New York，pp．881－889．

References II

雷 Kandiros，Vardis et al．（18－24 Jul 2021）．＂Statistical Estimation from Dependent Data＂．In：Proceedings of the 38th International Conference on Machine Learning．Ed．by Marina Meila and Tong Zhang．Vol．139．Proceedings of Machine Learning Research．PMLR，pp．5269－5278．URL： https：
／／proceedings．mlr．press／v139／kandiros21a．html．
固 Wu，Yihong and Harrison H．Zhou（2019）．＂Randomly initialized EM algorithm for two－component Gaussian mixture achieves near optimality in $O(\sqrt{n})$ iterations＂．In： arXiv preprint arXiv：1908．10935．
围 Yang，Fanny，Sivaraman Balakrishnan，and Martin J．Wainwright（2015）．＂Statistical and computational guarantees for the Baum－Welch algorithm＂．In： 2015 53rd Annual Allerton Conference on Communication，Control， and Computing（Allerton）．IEEE，pp．658－665．

