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What is a good generative model?
Faithfully modeling the data distribution? 
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Uncurated samples from StyleGAN2



Things not in data…
Controllability (hard to label all concepts, e.g., “baby”) 
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Things not in data…
Controllability (hard to label all concepts, e.g., “baby”) 

Fairness (hard to build a truly fair training set, e.g., across races)
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PromptGen is a remedy!
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A feed-forward neural network to model desired distributions in latent space
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A feed-forward neural network to model desired distributions in latent space



1. User specifies a generative model;

Framework overview
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Image-space energy (lower is better) 

How to specify a control?
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Inverse graphics energy Classifier energy

CLIP energy

Moment 
constraint



Optimize                             with a normalizing flow in the latent space 

Training algorithm and objective: 

How to approximate the control?

20

INN 

 (optional)



A synthetic 2D example
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-space (data)x

-spaceϵ

-space (latent)z

(a) Real data (b) Generative model (GAN)

(c) PromptGen with classifier control (d) PromptGen with debiasing control

-space (data)x -space (data)x

-space (data)x

-space (latent)z -space (latent)z-spaceϵ

p(x) = 0.3 ⋅ p(x |a1) + 0.7 ⋅ p(x |a2)
p(x |a1) = N(x (3,3)⊤, I)
p(x |a2) = N(x (−3, − 3)⊤, I)

Real dist. {
Fair classifier p(ai |x) = p(x |ai)

p(x |a1) + p(x |a2)



Code availableCheck our paper for details

Real data experiments
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