LASSIE: Learning Articulated Shape from Sparse Image Ensemble via 3D Part Discovery

Chun-Han Yao¹, Wei-Chih Hung², Yuanzhen Li³, Michael Rubinstein³, Ming-Hsuan Yang¹³⁴, Varun Jampani³ ¹UC Merced, ²Waymo, ³Google Research, ⁴Yonsei University

Optimizing Articulated Shapes from Sparse Images

Prior works

 Rely on statistical shape model, human annotations on images, or temporal correspondence in videos

SMAL [1]

SMALR [2]

LASR [3]

[1] Zuffi, Silvia, et al. "3D menagerie: Modeling the 3D shape and pose of animals." CVPR. 2017.

[2] Zuffi, Silvia, Angjoo Kanazawa, and Michael J. Black. "Lions and tigers and bears: Capturing non-rigid, 3d, articulated shape from images." CVPR. 2018.

[3] Yang, Gengshan, et al. "Lasr: Learning articulated shape reconstruction from a monocular video." CVPR. 2021.

Optimizing Articulated Shapes from Sparse Images

Prior works

• Rely on statistical shape model, human annotations on images, or temporal correspondence in videos

LASSIE

- Inputs: 10-30 in-the-wild images of an animal class
- **Outputs**: camera viewpoint, pose articulation, and deformable shape
- No pre-defined shape model, per-image annotations, or temporal information

Discovering 3D Neural Parts

Why reconstruct 3D parts?

- Simple geometry and rigid motion
- Semantic consistency across instances, articulation, viewpoints

Discovering 3D Neural Parts

Why reconstruct 3D parts?

- Simple geometry and rigid motion
- Semantic consistency across instances, articulation, viewpoints

Self-supervised part discovery

- 3D shape and part annotations are hard to obtain
- Part discovery by learning to reconstruct

Representation: Skeleton-based Neural Part Surfaces

Canonical

Resting pose

Canonical articulation

Camera-space articulation

Representation: Skeleton-based Neural Part Surfaces

Representation: Skeleton-based Neural Part Surfaces

Learning Latent Part Prior with 3D Primitives

Learning Latent Part Prior with 3D Primitives

LASSIE Optimization Framework

LASSIE Optimization Framework

LASSIE Optimization Framework

Datasets

Pascal-part [1]: horse, cow, sheep

Our image ensemble: zebra, tiger, giraffe, elephant, kangaroo, penguin

Image & keypoints

[1] Chen, Xianjie, et al. "Detect what you can: Detecting and representing objects using holistic models and body parts." CVPR. 2014.

Qualitative Comparisons – 3D reconstruction

Qualitative Comparisons – 2D (part) segmentation

Input

DINO clustering

3D Safari

A-CSM

LASSIE

Applications - animation

Applications – pose/motion transfer

Source

Target pose/motion

Result

LASSIE: Learning Articulated Shape from Sparse Image Ensemble via 3D Part Discovery

First approach for articulated shape reconstruction from sparse image ensemble in-the-wild

Key advantages

- In-the-wild images
- Self-supervised
- SOTA reconstruction accuracy
- Semantically consistent part discovery

Main technical contributions

- Skeleton-based neural part surfaces
- Latent part prior learning
- Semantic consistency loss based on self-supervised ViT features

