Approximate Secular Equations for the Cubic Regularization Subproblem

Yihang Gao, Man-Chung Yue and Micahel K. Ng

The University of Hong Kong

November 8, 2022

Overview

(1) Introduction

(2) The Secular Equation for CRS
(3) Approximate Secular Equations
(4) Implementation Details

(5 Experimental Results

Problem

$$
\min _{\boldsymbol{x} \in \mathbb{R}^{n}} f(\boldsymbol{x})
$$

where $f(\boldsymbol{x})$ is the non-convex objective function.

- ϵ-approximate stationary point.

$$
\|\nabla f(\boldsymbol{x})\|_{2} \leq \epsilon
$$

and \boldsymbol{x} satisfies the second-order necessary condition (e.g., $\left.\lambda_{\text {min }}\left(\nabla^{2} f(\boldsymbol{x})\right) \geq-\sqrt{\epsilon}\right)$.

- Second-order methods: Cubic Regularization (CR) [Nesterov et al., 2006] and Trust Region (TR) [Conn et al., 2000] methods, etc.
- Local convergence properties (e.g., superlinear, linear, and sublinear convergence) under mild assumptions [Yue et al., 2019].

Cubic Regularization

Each iteration of CR and its variants involve solving the following form, called cubic regularization subproblem (CRS):

$$
\begin{equation*}
\min _{\mathbf{x} \in \mathbb{R}^{n}} f_{\mathbf{A}, \mathbf{b}, \rho}(\mathbf{x}):=\mathbf{b}^{\mathrm{T}} \mathbf{x}+\frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}+\frac{\rho}{3}\|\mathbf{x}\|^{3} \tag{1}
\end{equation*}
$$

- In CR, we have the following update scheme:
$\mathbf{x}_{k+1} \in \arg \min _{\mathbf{x}} f\left(\mathbf{x}_{k}\right)+\mathbf{g}_{k}^{\mathrm{T}}\left(\mathbf{x}-\mathbf{x}_{k}\right)+\frac{1}{2}\left(\mathbf{x}-\mathbf{x}_{k}\right)^{\mathrm{T}} \mathbf{H}_{k}\left(\mathbf{x}-\mathbf{x}_{k}\right)+\frac{\rho}{3}\left\|\mathbf{x}-\mathbf{x}_{k}\right\|^{3}$, where $\mathbf{g}_{k}=\nabla f\left(\mathbf{x}_{k}\right)$ and $\mathbf{H}_{k}=\nabla^{2} f\left(\mathbf{x}_{k}\right)$.
- \mathbf{A} is not necessarily positive definite.

Secular Equation

- We denote by $\lambda_{1} \leq \cdots \leq \lambda_{n}$ the eigenvalues of \mathbf{A} and by $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$ the corresponding eigenvectors. In other words, we have the eigendecomposition $\mathbf{A}=\sum_{i=1}^{n} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{T}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}}$, where $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and $\mathbf{V}=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right]$.

Proposition ([Nesterov et al., 2006])

A vector \mathbf{x}^{*} solves the $C R S(1)$ if and only if it satisfies the system

$$
\left\{\begin{array}{r}
\left(\mathbf{A}+\rho\left\|\mathbf{x}^{*}\right\| \mathbf{I}\right) \mathbf{x}^{*}+\mathbf{b}=\mathbf{0} \tag{2}\\
\mathbf{A}+\rho\left\|\mathbf{x}^{*}\right\| \mathbf{I} \succeq \mathbf{0} .
\end{array}\right.
$$

Moreover, if $\mathbf{A}+\rho\left\|\mathbf{x}^{*}\right\| \mathbf{I} \succ \mathbf{0}$, then \mathbf{x}^{*} is the unique solution (and hence a critical point).

- If $\mathbf{b}^{\mathrm{T}} \mathbf{v}_{1} \neq 0$, then $\mathbf{A}+\rho\left\|\mathbf{x}^{*}\right\| \mathbf{I} \succ \mathbf{0}$ and the solution \mathbf{x}^{*} is the unique (second-order) critical point (and hence the unique solution).

Secular Equation

- Conditions (2) and (3) can be written as

$$
\left\{\begin{array}{r}
(\boldsymbol{\Lambda}+\sigma \mathbf{I}) \cdot \mathbf{y}^{*}=\mathbf{c}, \\
\lambda_{1}+\sigma>0 .
\end{array}\right.
$$

where $\sigma=: \rho\left\|\mathbf{x}^{*}\right\|,\left[y_{1}^{*}, \cdots, y_{n}^{*}\right]^{\mathrm{T}}:=\mathbf{y}^{*}=\mathbf{V}^{\mathrm{T}} \mathbf{x}^{*}$ and $\left[c_{1}, \cdots, c_{n}\right]^{\mathrm{T}}:=\mathbf{c}=-\mathbf{V}^{\mathrm{T}} \mathbf{b}$.

- Since the Euclidean norm is invariant to orthogonal transformation, we have

$$
\frac{\sigma^{2}}{\rho^{2}}=\left\|\mathbf{x}^{*}\right\|^{2}=\left\|\mathbf{y}^{*}\right\|^{2}=\sum_{i=1}^{n} \frac{c_{i}^{2}}{\left(\lambda_{i}+\sigma\right)^{2}}
$$

- We first find the (unique) root $\sigma>\max \left\{-\lambda_{1}, 0\right\}$ of the equation

$$
\begin{equation*}
w(\sigma)=\sum_{i=1}^{n} \frac{c_{i}^{2}}{\left(\lambda_{i}+\sigma\right)^{2}}-\frac{\sigma^{2}}{\rho^{2}} \tag{4}
\end{equation*}
$$

called the secular equation, and then solves the linear system $(\mathbf{A}+\sigma \mathbf{l}) \mathbf{x}=-\mathbf{b}$.

The First-Order Truncated Secular Equation

- We define the first-order truncated secular equation by

$$
\begin{equation*}
w_{1}(\sigma ; \mu)=\sum_{i=1}^{m} \frac{c_{i}^{2}}{\left(\lambda_{i}+\sigma\right)^{2}}+\sum_{i=m+1}^{n} \frac{c_{i}^{2}}{(\mu+\sigma)^{2}}-\frac{\sigma^{2}}{\rho^{2}} \tag{5}
\end{equation*}
$$

where $\mu \geq \lambda_{m}$.

Lemma

For any $\mu \geq \lambda_{m}$, the function $w_{1}(\because ; \mu)$ as defined in (5) admits a unique root.

The First-Order Truncated Secular Equation

Theorem

Let σ_{1}^{*} and σ^{*} be the unique roots of $w_{1}(\sigma ; \mu)$ and $w(\sigma)$, respectively. Then

$$
\begin{equation*}
\left|\sigma_{1}^{*}-\sigma^{*}\right| \leq C_{m} \cdot \max _{m+1 \leq i \leq n}\left|\lambda_{i}-\mu\right|, \tag{6}
\end{equation*}
$$

where $C_{m}>0$ is a constant, upper bounded by
$\frac{2\|\mathbf{b}\|^{2}}{\left(\lambda_{m}-\lambda_{1}\right)^{3}} \cdot \min \left\{\frac{\left(\lambda_{n}+B_{1}\right)^{3}}{2\|\mathbf{b}\|^{2}}, \frac{\rho^{2}}{2 B_{1}}\right\}$ with $B_{1}=\frac{-\lambda_{1}+\sqrt{\lambda_{1}^{2}+4 \rho \cdot\|\mathbf{b}\|}}{2}$ being an upper bound for $\left|\sigma_{1}^{*}\right|$.

Proposition

Let \mathbf{x}^{*} and $\tilde{\mathbf{x}}$ be solutions to the equations $\left(\mathbf{A}+\sigma^{*} \mathbf{I}\right) \mathbf{x}^{*}=-\mathbf{b}$ and $\left(\mathbf{A}+\sigma_{1}^{*} \mathbf{I}\right) \tilde{\mathbf{x}}=-\mathbf{b}$, respectively. Then, $\left\|\tilde{\mathbf{x}}-\mathbf{x}^{*}\right\|=\mathcal{O}\left(\left|\sigma_{1}^{*}-\sigma^{*}\right|\right)$.

The First-Order Truncated Secular Equation

- An intuitive choice of μ that works well in practice and is computationally cheap is the average of unknown eigenvalues, i.e.,

$$
\begin{equation*}
\mu_{1}=\frac{\sum_{i=m+1}^{n} \lambda_{i}}{n-m}=\frac{\operatorname{tr}(\mathbf{A})-\sum_{i=1}^{m} \lambda_{i}}{n-m} . \tag{7}
\end{equation*}
$$

- An example on Random Gaussian matrices. Suppose that $\mathbf{A}=\widetilde{\mathbf{A}} / \sqrt{2 n}$, where $\widetilde{\mathbf{A}}$ is a symmetric random matrix with i.i.d. entries on and above the diagonal. By the Wigner semicircle law, as $n \rightarrow \infty$, the eigenvalues of \mathbf{A} distribute according to a density of a semi-circle shape. In particular, we can deduce that with a probability of $1-o(1)$,

$$
\begin{equation*}
\max _{m+1 \leq \leq \leq n}\left|\lambda_{i}-\mu\right| \leq \mathcal{O}\left(\left(1-\frac{m+1}{n}\right)^{2 / 3}\right) \approx\left(\frac{3 \pi}{4 \sqrt{2}}\right)^{2 / 3} \cdot\left(1-\frac{m+1}{n}\right)^{2 / 3} \tag{8}
\end{equation*}
$$

The Second-Order Truncated Secular Equation

- With the second-order Taylor approximation, we define the second-order truncated secular equation by

$$
\begin{equation*}
w_{2}(\sigma ; \mu)=\sum_{i=1}^{m} \frac{c_{i}^{2}}{\left(\lambda_{i}+\sigma\right)^{2}}+\sum_{i=m+1}^{n} \frac{c_{i}^{2}}{(\mu+\sigma)^{2}}-2 \sum_{i=m+1}^{n} \frac{c_{i}^{2} \cdot\left(\lambda_{i}-\mu\right)}{(\mu+\sigma)^{3}}-\frac{\sigma^{2}}{\rho^{2}}, \tag{9}
\end{equation*}
$$

where $\mu \geq \lambda_{m}$.

Lemma

With

$$
\begin{equation*}
\mu=\frac{\sum_{i=m+1}^{n} c_{i}^{2} \cdot \lambda_{i}}{\sum_{i=m+1}^{n} c_{i}^{2}} \tag{10}
\end{equation*}
$$

the function $w_{2}(\cdot ; \mu)$ as defined in (9) admits a unique root.

The Second-Order Truncated Secular Equation

Theorem

Let σ_{2}^{*} and σ^{*} be the unique root of $w_{2}(\sigma ; \mu)$ and $w(\sigma)$, respectively, and

$$
\mu=\frac{\sum_{i=m+1}^{n} c_{i}^{2} \cdot \lambda_{i}}{\sum_{i=m+1}^{n} c_{i}^{2}}
$$

Then,

$$
\begin{equation*}
\left|\sigma_{2}^{*}-\sigma^{*}\right| \leq C_{m} \cdot \max _{m+1 \leq i \leq n}\left(\lambda_{i}-\mu\right)^{2} \tag{11}
\end{equation*}
$$

where $C_{m}>0$ is a constant bounded by $\frac{3\|\mathbf{b}\|^{2}}{\left(\lambda_{m}-\lambda_{1}\right)^{4}} \cdot \min \left\{\frac{\left(\lambda_{n}+B_{1}\right)^{3}}{2\|\mathbf{b}\|^{2}}, \frac{\rho^{2}}{2 B_{1}}\right\}$ with $B_{1}=\frac{-\lambda_{1}+\sqrt{\lambda_{1}^{2}+4 \rho \cdot\|\mathbf{b}\|}}{2}$ being an upper bound for $\left|\sigma_{2}^{*}\right|$.

Implementation Details

- The resulting CRS solver, namely the approximate secular equation method (ASEM), is summarized as follows: Step 1: obtaining the partial eigen information $\left\{\lambda_{1}, \cdots, \lambda_{m}\right\}$ and $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{m}\right\}$ of \mathbf{A}.
Step 2: solving the secular equation (5) with μ defined in (7) or (10); we get σ^{*}.

Step 3: iteratively solving the linear system $\left(\mathbf{A}+\sigma^{*} \mathbf{I}\right) \mathbf{x}+\mathbf{b}=\mathbf{0}$.
Output: the solution \mathbf{x}.

- Krylov subspace (Lanczos) method for partial eigen information. Matlab (eigs function) and Python (Scipy package) etc.
- Bisection method for finding roots of approximate secular equations $w_{1}(\cdot, \mu)$ and $w_{2}(\cdot, \mu)$.
- Krylov subpace (Lanczos) method for solving the linear system $(\mathbf{A}+\sigma \mathbf{l}) \mathbf{x}=-\mathbf{b}$.

Synthetic Examples

Figure: Trajectories of suboptimality (gradient norm $\left.\left\|\nabla f_{\mathrm{A}, \mathrm{b}, \rho}(\mathbf{x})\right\|\right)$ with different distributions for eigenvalues in Experiment 1.

Figure: Trajectories of suboptimality (gradient norm $\left.\left\|\nabla f_{\mathrm{A}, \mathrm{b}, \rho}(\mathbf{x})\right\|\right)$ with different μ in Experiment 2.

Figure: Trajectories of suboptimality (gradient norm $\left.\left\|\nabla f_{\mathrm{A}, \mathrm{b}, \rho}(\mathbf{x})\right\|\right)$ with exact and approximated eigenvalues and eigenvectors in Experiment 3.

CUTEst Examples

Problem	Method	$f\left(\mathbf{x}_{\text {out }}\right)$	$\left\\|\nabla f\left(\mathbf{x}_{\text {out }}\right)\right\\|$	$\lambda_{1}\left(\nabla^{2} f\left(\mathbf{x}_{\text {out }}\right)\right)$	iter	time(s)
TOINTGSS$(n=1000)$	ARC-CP	$3.60 \mathrm{E}+14$	$4.12 \mathrm{E}-05$	$1.40 \mathrm{E}-16$	1000	6.08
	ARC-GD	$3.60 \mathrm{E}+14$	$1.42 \mathrm{E}-06$	$3.89 \mathrm{E}-16$	100	6.98
	ARC-Krylov(1)	$3.60 \mathrm{E}+14$	$4.12 \mathrm{E}-05$	$1.20 \mathrm{E}-15$	300	6.75
	ARC-Krylov(10)	$3.60 \mathrm{E}+14$	$2.20 \mathrm{E}-08$	$1.29 \mathrm{E}-15$	19	1.87
	ARC-ASEM(1)	$3.60 \mathrm{E}+14$	8.01E-10	-1.63E-15	$\underline{19}$	2.17
	ARC-ASEM(10)	$3.60 \mathrm{E}+14$	$8.17 \mathrm{E}-10$	$-7.67 \mathrm{E}-16$	19	2.74
BRYBAND$(n=2000)$	ARC-CP	$7.49 \mathrm{E}+14$	$1.10 \mathrm{E}-03$	$5.40 \mathrm{E}+00$	1000	8.27
	ARC-GD	1.25E+05	$4.93 \mathrm{E}+03$	$4.40 \mathrm{E}+02$	100	11.05
	ARC-Krylov(10)	$7.49 \mathrm{E}+14$	6.60E-06	$5.40 \mathrm{E}+00$	100	9.85
	ARC-Krylov(30)	$7.49 \mathrm{E}+14$	$1.14 \mathrm{E}-07$	$5.40 \mathrm{E}+00$	14	$\underline{2.37}$
	ARC-ASEM(1)	$7.49 \mathrm{E}+14$	$1.02 \mathrm{E}-07$	$5.40 \mathrm{E}+00$	14	2.24
	ARC-ASEM(10)	$7.49 \mathrm{E}+14$	1.01E-07	$5.40 \mathrm{E}+00$	14	3.83
DIXMAANG$(n=3000)$	ARC-CP	$1.00 \mathrm{E}+00$	$3.13 \mathrm{E}-04$	$6.67 \mathrm{E}-04$	2000	35.16
	ARC-GD	$1.00 \mathrm{E}+00$	$9.24 \mathrm{E}-05$	$6.67 \mathrm{E}-04$	200	33.83
	ARC-Krylov(10)	$1.00 \mathrm{E}+00$	$3.44 \mathrm{E}-05$	$6.67 \mathrm{E}-04$	500	32.18
	ARC-Krylov(30)	$1.00 \mathrm{E}+00$	$9.06 \mathrm{E}-09$	$6.67 \mathrm{E}-04$	46	6.65
	ARC-ASEM(1)	$1.00 \mathrm{E}+00$	$5.53 \mathrm{E}-09$	$6.67 \mathrm{E}-04$	30	7.51
	ARC-ASEM(10)	$1.00 \mathrm{E}+00$	4.85E-09	$6.67 \mathrm{E}-04$	42	18.74
TQUARTIC$(n=5000)$	ARC-CP	$8.04 \mathrm{E}-01$	$6.10 \mathrm{E}-02$	-5.41E-05	500	71.92
	ARC-GD	8.05E-01	$2.77 \mathrm{E}-02$	-4.80E-05	100	98.14
	ARC-Krylov(1)	$8.05 \mathrm{E}-01$	$2.76 \mathrm{E}-02$	-4.71E-05	100	29.43
	ARC-Krylov(10)	5.05E-14	8.48E-09	$4.00 \mathrm{E}-04$	46	16.09
	ARC-ASEM(1)	$7.43 \mathrm{E}-14$	$9.62 \mathrm{E}-09$	$4.00 \mathrm{E}-04$	$\underline{46}$	15.47
	ARC-ASEM(10)	$7.43 \mathrm{E}-14$	$9.62 \mathrm{E}-09$	$4.00 \mathrm{E}-04$	46	16.18

Figure: Results on CUTEst problems in Experiment 5 (ARC [Cartis et al., 2011]).

References I

Yurii Nesterov，Boris T Polyak（2006）
Cubic regularization of Newton method and its global performance， Mathematical Programming．

Andrew Conn，Nicholas IM Gould，Philippe L Toint（2000）
Trust region methods，
SIAM．
目 Man－Chung Yue，Zirui Zhou，Man－Cho So（2019）
On the quadratic convergence of the cubic regularization method under a local error bound condition，
SIAM Journal on Optimization．
國 Yair Carmon，John Duchi（2019）
Gradient descent finds the cubic－regularized nonconvex Newton step， SIAM Journal on Optimization．
固
Coralia Cartis，Nicholas IM Gould，Philippe L Toint（2011）
Adaptive cubic regularisation methods for unconstrained optimization．Part I： motivation，convergence and numerical results，
Mathematical programming．

The End

Thanks!

