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Introduction

I_Aet X be a set of features, ) = {0,1} be the true label space and
Y =10,1] be the prediction space.

» Online learning is game between Nature and Predictor.

» At each time step t, Nature selects x; € X’ and reveals to Predictor.

> Predictor makes prediction §; € ), based on xt = {x1---,%x¢} and
yor={y, - yea )

» Nature reveals the true label y; € ), and the Predictor incurs a loss
U(9¢, yr) where £ is the logarithmic loss:

‘g(}?tvyt) =Yt |0g(}7t) - (1 - )/t) |0g(1 - }7t)

» The game continues upto time T
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» Nature reveals the true label y; € ), and the Predictor incurs a loss
U(9¢, yr) where £ is the logarithmic loss:
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» The game continues upto time T

Goal: Minimize the accumulative loss Zthl UPr, ye).
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Example: The parametric linear class is defined to be

H'™ = {hy(x) = [(w,x)| : w,x € R? and [|w]|2, ||x]]> < 1}.



Prior work

» A large body of work in information theory that assumes x” is given

in advance (a.k.a. simulatable case). Completely characterized by
the Shtarkov sum. [Sht87, Ris84, BRY98, CL01, DS04]

» For finite H, we have r3(H) < log|H| by Aggregating Algorithm
[Vol01] (i.e., Bayesian algorithm).

» For infinite H, [RS15] showed rZ(H) = o(T) if and only if the
sequential fat shattering number of H is finite. But provide only
suboptimal bounds, e.g., it gives ra(H'™) < O(T3/4).

> Tighter bound was provided in [BFR20] that improves universally
[RS15], e.g., it gives r3(H'"™) < O(T?/3). For non-parametric
Lipschitz functions, they also provide a matching lower bound.
However, the approach is non-constructive.



Our contributions

1. We provide an explicit algorithmic approach that achieves the bound
as in [BFR20] with better (optimal) constants.

2. We provide a general approach for deriving lower bounds through
the concept of fixed design regret:

rr(H | xT) =infsupR(¢",y ", H | xT).
¢ T
3. Establishes precise regret bounds for specific classes that either

improves or provide best bound compare to prior known results, e.g.,
we have (for d > T):

Q(T2/3) < r?_(Hlin) < é(T2/3).



Main Techniques

» Upper Bounds: applying Bayesian Averaging over a Smooth
Truncated Sequential covering set, based on the sequential
converging construction as in [RST10] together with the following
smooth truncation approach

trunc(g(x)) = g(x) +a

1+ 2a
> Lower Bounds: analyzing the fixed design regret ri(H | x") via the
Shtarkov sum, by selecting some hard features x” that maximize
re(H | xT).
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