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Introduction

Let X be a set of features, Y = {0, 1} be the true label space and
Ŷ = [0, 1] be the prediction space.

▶ Online learning is game between Nature and Predictor.

▶ At each time step t, Nature selects xt ∈ X and reveals to Predictor.

▶ Predictor makes prediction ŷt ∈ Ŷ, based on xt = {x1 · · · , xt} and
y t−1 = {y1, · · · , yt−1}.

▶ Nature reveals the true label yt ∈ Y, and the Predictor incurs a loss
ℓ(ŷt , yt) where ℓ is the logarithmic loss:

ℓ(ŷt , yt) = −yt log(ŷt)− (1− yt) log(1− ŷt).

▶ The game continues upto time T

Goal: Minimize the accumulative loss
∑T

t=1 ℓ(ŷt , yt).
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Introduction

To avoid trivial impossibility result, an additional expert class H ⊂ ŶX is
introduced.

▶ The quality of prediction is measured trough (pointwise) regret:

R(ŷT , yT ,H | xT ) =
T∑
t=1

ℓ(ŷt , yt)− inf
h∈H

T∑
t=1

ℓ(h(xt), yt).

▶ We are interested in analyzing the sequential minimax regret:

r aT (H) = sup
x1

inf
ŷ1

sup
y1

· · · sup
xT

inf
ŷT

sup
yT

R(ŷT , yT ,H | xT ).

Example: The parametric linear class is defined to be

Hlin = {hw(x) = |⟨w, x⟩| : w, x ∈ Rd and ||w||2, ||x||2 ≤ 1}.
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ŷT

sup
yT
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Prior work

▶ A large body of work in information theory that assumes xT is given
in advance (a.k.a. simulatable case). Completely characterized by
the Shtarkov sum. [Sht87, Ris84, BRY98, CL01, DS04]

▶ For finite H, we have r aT (H) ≤ log |H| by Aggregating Algorithm
[Vol01] (i.e., Bayesian algorithm).

▶ For infinite H, [RS15] showed r aT (H) = o(T ) if and only if the
sequential fat shattering number of H is finite. But provide only
suboptimal bounds, e.g., it gives r aT (Hlin) ≤ Õ(T 3/4).

▶ Tighter bound was provided in [BFR20] that improves universally
[RS15], e.g., it gives r aT (Hlin) ≤ Õ(T 2/3). For non-parametric
Lipschitz functions, they also provide a matching lower bound.
However, the approach is non-constructive.
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Our contributions

1. We provide an explicit algorithmic approach that achieves the bound
as in [BFR20] with better (optimal) constants.

2. We provide a general approach for deriving lower bounds through
the concept of fixed design regret:

r∗T (H | xT ) = inf
ϕT

sup
yT

R(ϕT , yT ,H | xT ).

3. Establishes precise regret bounds for specific classes that either
improves or provide best bound compare to prior known results, e.g.,
we have (for d ≥ T ):

Ω(T 2/3) ≤ r aT (Hlin) ≤ Õ(T 2/3).
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Main Techniques

▶ Upper Bounds: applying Bayesian Averaging over a Smooth
Truncated Sequential covering set, based on the sequential
converging construction as in [RST10] together with the following
smooth truncation approach

trunc(g(x)) =
g(x) + α

1 + 2α
.

▶ Lower Bounds: analyzing the fixed design regret r∗T (H | xT ) via the
Shtarkov sum, by selecting some hard features xT that maximize
r∗T (H | xT ).
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Thanks!
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