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Overview of the problem

Is strength (norm) of θ large enough?



Robust Sparse Gaussian Mean Testing

We consider the following model:

Xi = θ + Zi for 1 ≤ i ≤ n,

where

▶ θ ∈ Rd is s-sparse, i.e. ∥θ∥0 ≤ s,

▶ Zi
i.i.d.∼ N (0, Id).

We want to find the minimum n required to distinguish between the hy-
potheses:

H0 : ∥θ∥2 = 0

H1 : ∥θ∥2 ≥ γ

from the observations (X1,X2, X̃3,X4, · · · , X̃n−2,Xn−1,Xn).
Here, (X̃i ) denote an ε-fraction of Xi ’s that are arbitrarily corrupted–
known as the ε-corruption model.
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Robust Testing in Sparse Linear Regression Model

Another well studied model:

yi = ⟨Xi , θ⟩+ zi for 1 ≤ i ≤ n,

where

▶ θ ∈ Rd is s-sparse,

▶ Xi
i.i.d.∼ N (0, Id),

▶ zi
i.i.d.∼ N (0, 1), independent of Xi ’s.

Again, we want to distinguish between the hypotheses:

H0 : ∥θ∥2 = 0

H1 : ∥θ∥2 ≥ γ

from the observations(
(X1, y1), (X2, y2), (X̃3, ỹ3), (X4, y4), · · · , (X̃n−2, ỹn−2), (Xn−1, yn−1), (Xn,Xn)

)
.
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)
.



Sample Complexity in Non-Robust Setting

It is known [Collier-Comminges-Tsybakov 17, Carpentier et. al. 19] that,
in the non-robust setting, these problems have sample complexity

n(s, d) =

{
Θ
(
s log

(
1 + d

s2

))
if s <

√
d

Θ
(√

d
)

if s ≥
√
d .

Both the problems exhibit a phase transition at s ≈
√
d .



Our Results

Theorem 1 (Robust sparse Gaussian mean testing)

Sample complexity of robust sparse Gaussian mean testing under
ε-corruption model is

Ω

(
s log

ed

s

)
.

Theorem 2 (Robust testing in sparse linear regression model)

Sample complexity of robust testing in sparse linear regression under
ε-corruption model is

Ω

(
min

(
s log d ,

1

γ4

))
.

These lower bounds are tight and are achieved by already known
estimation algorithms.
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Our Results

We observe that the phase transition disappear and the testing become
much harder in the dense regime.



When θ is s-sparse in lq norm

We also present the sample complexity of robust sparse Gaussian mean
testing when θ is s-sparse in lq norm instead of l0 norm, where q ∈
(0, 2).

Theorem 3 (Robust sparse (lq) Gaussian mean testing)

For q ∈ (0, 2), the sample complexity of robust sparse Gaussian mean
testing, where θ is s-sparse in lq norm, is

Θ

(
m log

ed

m

)
,

where m = max{u ∈ [d ] : γ2u
2
q−1 ≤ s2} is called the effective sparsity.



Conclusions and Future work

Conclusions:

▶ Ensuring robustness in these testing problems come at a cost, which
is in contrast to common estimation problems.

▶ These problems don’t exhibit phase transition anymore!

Future work:

▶ How to make the sample complexity tight w.r.t. γ and ε?

▶ What is the sample complexity when the covariance of the noise is
not identity?

Thank you!
https://arxiv.org/abs/2205.07488
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