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N Deep Learning for EDA

Integrated circuits (ICs) are extensively used in modern electronic
products like computers, smart-phones, and cars.

Due to the rapid growth in the scale of circuits, deep learning technologies
have been widely exploited in Electronic Design Automation (EDA) to:

e Speed up circuit design

« save labor costs



Target of Circuit Prediction Task
 to find defected circuits early

Circuit Prediction Task
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Circuit Prediction Task

Challenges of Circuit Prediction Task:
« Complex and variant information underlying under different stages
« (Generalize/transfer across tasks
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Circuit Prediction Task

Challenges of Circuit Prediction Task:
« Complex and variant information underlying under different stages

Existing methods are stage-specific:
« focus on either topological/geometrical information
« not compatible with circuits on logic synthesis stage
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Circuit Prediction Task

Challenges of Circuit Prediction Task:
 Complex and variant information ...
* Generalize/transfer across tasks
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N Circuit Prediction Task

Challenges of Circuit Prediction Task:
 (Generalize/transfer across tasks

Existing methods are task-specific:
« focus on one (or few) prediction task(s)
 task-specific modules stifle knowledge transferring among tasks

used to predict
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N Circuit Prediction Task

We propose a circuit representation framework:
« Data structure: Circuit Graph
* Neural network: Circuit GNN

The solution is VERSATILE:
e stage-adaptive

e can exploit and fuse topological/geometrical information

« compatible with circuits in logic synthesis/placement stages
« task-adaptive

e can be used to solve various circuit prediction tasks

« can transfer knowledge learned from one task to others



Heterogeneous graph with two types of edges:
« topo-edges: topological connections between cells and nets
« geom-edges: geometrical adjacencies among cells (absent for logic synthesis circuits)
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Multi-layer message-passing & fusing:

« Pass topological/geometrical messages and fuse them at the end of each layer
* Only pass topological message for logic synthesis circuits
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Experiments

Congestion prediction results in logic/placement stages:
« Our solution is both efficient and effective
« Our solution is adaptive to both stages, whether or not geometry is available

Table 1: Congestion prediction result in logic synthesis stage

. Time Cell-level Grid-level
Baseline .
(s/epoch) pearson spearman kendall pearson spearman kendall
GCN 9.43 0.777 0.265 0.199 0.221 0.366 0.260
GraphSAGE 11.79 0.776 0.252 0.188 0.208 0.375 0.268
GAT 13.90 0.777 0.267 0.200 0.215 0.399 0.280
CongestionNet 22.31 0.777 0.269 0.200 0.277 0.394 0.280
MPNN 116.24 0.780 0.289 0.217 0.292 0.458 0.319

Ours (w/o. geom.) 21.62 0.779 0.289 0.217 0.315 0.468 0.329

Table 2: Congestion prediction result in placement stage (in correlation)

Time Cell-level Grid-level

Baseline (s/epoch)

pearson spearman kendall pearson spearman kendall

GAT (w. geom.) 16.21 0.777 0.263 0.197 0.210 0.397 0.279
pix2pix 4.46 - - - 0.562 0.554 0.392
LHNN 305.47 - - - 0.703 0.695 0.540

Ours (w/o. topo.) 21.54 0.883 0.713 0.573 0.684 0.730 0.536

Ours 27.07 0.887 0.714 0.575 0.697 0.770 0.577




Congestion prediction results in placement stage (visualized):
* Our solution has clearer decision boundary

(a) Input (b) pix2pix (c) LHNN (d) Ours (e) Ground-truth

Figure 5: Visualization of congestion maps of circuit ispd2011/superbluel9 produced by the
baselines.
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Net wire-length prediction results in placement stage:
« Our solution is also efficient and effective
« Our solution is much better than LHNN, which is especially designed to predict congestion

Table 3: Net wirelength prediction in placement stage (| means “lower is better”)
Baseline Time (s/epcoh) pearson spearman kendall MAE] RMSE]

MLP 2.22 0.493 0.547 0.415 0.626  0.819
Net?f 10.42 0.517 0.635 0.525 0.615  0.825
Net?2 19.83 0.632 0.656 0.553  0.614  0.821
LHNN 260.00 0.801 0.796 0.603  0.581 0.780
Ours 14.79 0.848 0.835 0.646  0.483  0.683

(a) MLP (b) Net™ (¢) Net™ (d) LHNN (e) Ours

Figure 6: Scattering the models™ output (axis-y) and ground-truth (axis-x) (placement stage).
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Transfer task (congestion -> wire-length):

« LHNN/Ours: trained on wire-length task

 LHNN/Ours(evaluate): trained on congestion task and evaluated on wire-length task
» the regressor is re-trained, similar for (fine-tune)

« LHNN/Ours(fine-tune): trained on congestion task and fine-tuned on wire-length task

Table 4: Transfer experiment from congestion prediction to wirelength prediction. Results are
evaluated in Grid-level.

Baseline Time (s/epoch) pearson spearman kendall
MLP 2.22 0.493 0.547 0.415
LHNN (evaluate) 192.45 0.689 0.715 0.563
Ours (evaluate) 9.55 0.799 0.811 0.622
LHNN (fine-tune) 248.96 0.805 0.794 0.612
Ours (fine-tune) 14.8 0.842 0.829 0.639
LHNN 260 0.801 0.796 0.603

Ours 14.79 (0.848 0.835 0.646




N) Limitation & Future Work

1. There is still a gap between the novel machine learning algorithms
and their application in commercial tools.

2. Our solution is only applicable to netlists (in logic synthesis stage)
and layouts (in placement stage), while data-flow graphs or And-
Inverter Graphs (AIGS) in other stages are not supported.
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