

Does Self-supervised Learning Really Improve Reinforcement Learning from Pixels?

Xiang Li¹ Jinghuan Shang¹ Srijan Das^{1,2} Michael S. Ryoo¹

Department of Computer Science ¹Stony Brook University ²UNC Charlotte

Does Self-supervised Learning Really Improve Reinforcement Learning from Pixels?

No

NO*

* The existing SSL framework for RL fails to bring meaningful improvement over the baselines when the same amount of data and augmentation is used

Previous works on SSL + RL

Apply RL update and SSL update in one batch alternatingly

SAC+AE^[1] for each batch: SAC update RAE^[2] update

CURL^[3] for each batch: SAC update MoCo^[4] update

[1] Denis Yarats, et al. Improving sample efficiency in model-free reinforcement learning from images. AAAI, 2021. [2] Ghosh, Partha, et al. From variational to deterministic autoencoders, ICLR, 2020.

[3] Michael Laskin, et al. Curl: Contrastive unsupervised representations for reinforcement learning. ICML, 2020.

[4] He, Kaiming, et al. Momentum contrast for unsupervised visual representation learning.CVPR. 2020.

Joint Learning Framework for RL + SSL

We **extend** the existing framework to a **general** joint learning framework

for each batch:

Image augmentation

SAC update

SSL update

SSL Loss options

- 1. Pairwise Learning (6 methods)
 - BYOL, DINO, SimSiam, CURL-w-actor...
- 2. Transformation Awareness (2 methods)
 - RotationCLS, ShuffleCLS
- 3. Reconstruction (2 methods)
 - AutoEncoder, MAE
- 4. RL Context Prediction (9 methods)
 - Predict Action, Predict Reward, Predict Future, ...

NEURAL INFORMATION PROCESSING SYSTEMS

General RL context prediction

Evolving Losses for RL + SSL

Combine multiple self-supervised losses

$$\mathcal{L}_{\text{Combo}} = \sum_{i=1}^{N_l} w_i \cdot \mathcal{L}_i$$

Inspired by ELo^[1], we use **evolutionary search** to find the optimal :

- Loss combination
 - CURL, DINO, Predict-FR, Extract-AR, AutoEncoder, RotationCLS, ...
- Magnitude of image augmentation
 - With Online branch, with EMA branch

Evaluation

Continuous Action Space: 6 envs from DMControl^[1] + 1 real robot env + more

bs=512, env step=100k, frame stack=3, 10 seeds each

5 seeds

Discrete Action Space: 7 envs from Atari^[2]

Yuval Tassa, et al. Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018.
Marc G Bellemare, et al. The arcade learning environment: An evaluation platform for general agents. JAIR, 2013.

SAC-NoAug: Vanilla SAC w/o augmentation or SSL

SAC-NoAug: Vanilla SAC w/o augmentation or SSL **Blue**: Augmentation w/o SSL

SAC-NoAug: Vanilla SAC w/o augmentation or SSL Blue: Augmentation w/o SSL Gray: Augmentation and one SSL loss

Ν

Y

Y

Y

Y

of SSL

0

0

1

2

6

SAC-NoAug: Vanilla SAC w/o augmentation or SSL

- Blue: Augmentation w/o SSL
- Gray: Augmentation and one SSL loss
- **Orange:** Augmentation and two SSL losses (manually combined)

SAC-NoAug: Vanilla SAC w/o augmentation or SSL

Blue: Augmentation w/o SSL

Gray: Augmentation and one SSL loss

Orange: Augmentation and two SSL losses (manually combined)

Green: Augmentation and multiple SSL losses (automatically combined)

1. Image augmentation is important, as well as how to augment

- 1. Image augmentation is important, as well as how to augment
- 2. Not all SSL help

- 1. Image augmentation is important, as well as how to augment
- 2. Not all SSL help
- 3. Existing SSL methods fail to outperform DrQ (based on augmentation)

Experiments: Atari

	Augmentation	# of SSL
Red	N	0
Blue	Y	0
Gray	Y	1
Orange	Y	2
Green	Y	5

- 1. Most of the SSL methods fail to bring meaningful improvements
- 2. Rainbow+AE performs better than other baselines in Atari,

but it did not perform well in DMControl

Experiments: Real Robot

Goal: move close to the target as fast as possible **Observation**: images from 2 cameras **Action space**: 3D robot movement

Autonomously Random Reset

Experiments: Real Robot

SAC-NoAug: SAC w/o aug or SSL		
SAC-Aug(100), DrQ,		
DrQ(100) :	Aug w/o SSL	
CURL:	Aug and 1 SSL loss	
ELo-SAC:	Aug and 6 SSL losses	

- 1. Image augmentation is important, as well as how to augment
- 2. The role of SSL is usually limited

Experiments: Real Robot

SAC-NoAug: SAC w/o aug or SSL		
SAC-Aug(100), DrQ,		
DrQ(100):	Aug w/o SSL	
CURL:	Aug and 1 SSL loss	
ELo-SAC:	Aug and 6 SSL losses	

- 1. Image augmentation is important, as well as how to augment
- 2. The role of SSL is usually limited

Conclusion

- 1. The role of SSL with the joint learning framework is **usually limited**, while the selection of image augmentation is more important
- 2. There is **no** golden SSL / augmentation that works for all environments

Further discussion

- Ablations, representation analysis, pretraining framework, ...
- Please check our paper and the appendix.

Thank you!

Our code is available at

https://github.com/LostXine/elo-sac