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What is Theseus?

Theseus is an efficient application-agnostic library for building custom 
nonlinear optimization layers in PyTorch to support constructing various 
problems in robotics and vision as end-to-end differentiable architectures
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SLAM
Bundle adjustment

Structure from motion
Tracking and estimation

Motion planning
Optimal control

…
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The literature is fragmented
• Implementations are application specific
• Limited batching and GPU support
• Do not leverage sparsity
• Backprop only via unrolling
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What is Theseus?

Theseus is an efficient application-agnostic library for building custom 
nonlinear optimization layers in PyTorch to support constructing various 
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Pose graph optimization

Motion Planning Bundle adjustment

Tactile state estimation
Homography estimation
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Step 1: Linearize

Step 2: Linear solve

Step 3: Update

repeat
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Step 1: Linearize

Step 2: Linear solve

Step 3: Update

repeat

torch.solve() treats A 
as a dense matrix
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Sparse vs Dense solvers

Pose Graph Optimization
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Sparse vs Dense solvers

Pose Graph Optimization

● Scales to 256 batch x 4096 poses on a standard GPU
● Dense solvers are slow and run out of memory
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Automatic vectorization

No vectorization
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Automatic vectorization

● Up to an order of magnitude speed-up

No vectorization



Theseus forward vs Ceres

Pose Graph Optimization
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Theseus forward vs Ceres

Ceres

Pose Graph Optimization

● Up to 20x speed-up over Ceres 28
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Backward modes

Tactile state estimation
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Backward modes

Tactile state estimation
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Backward modes

● Implicit needs only constant time and memory
● Implicit gives better gradients

o Even with few inner loop iterations

Tactile state estimation
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