SPoVT: Semantic-Prototype Variational Transformer for Dense Point Cloud Semantic Completion

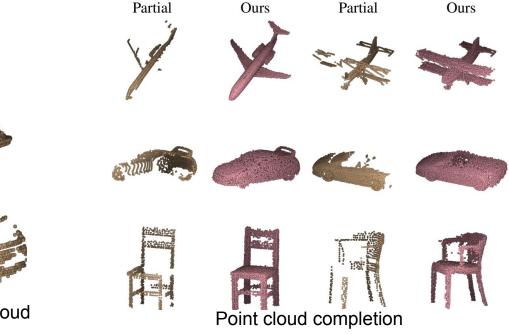
Sheng-Yu Huang^{1*} Hao-Yu Hsu^{1*} Yu-Chiang Frank Wang^{1,2}

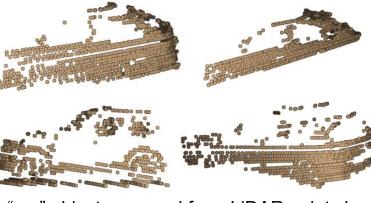
¹Graduate Institute of Communication Engineering, National Taiwan University ²NVIDIA

NeurIPS 2022

Point Cloud Completion

- Point clouds from sensors are usually occluded or broken
- Point cloud completion : repairing the incomplete point cloud
- Making further applications easier (e.g. Object detection, Semantic segmentation)
 Partial Ours

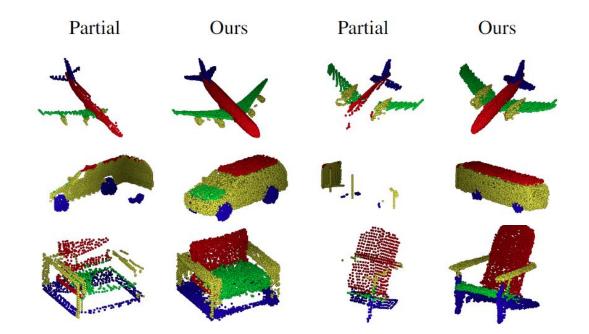




"car" objects cropped from LiDAR point cloud

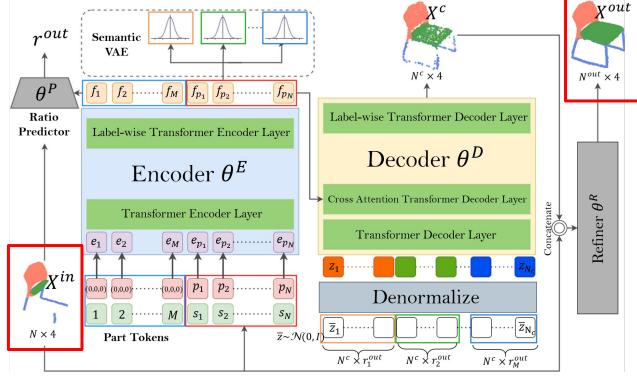
Goal

- Point cloud semantic completion
 - Input both point cloud coordinates and per-point semantic part label
 - Predict both complete point cloud and semantic segmentation
 - Semantic Part: back, seat, handle, and leg for chairs, etc.



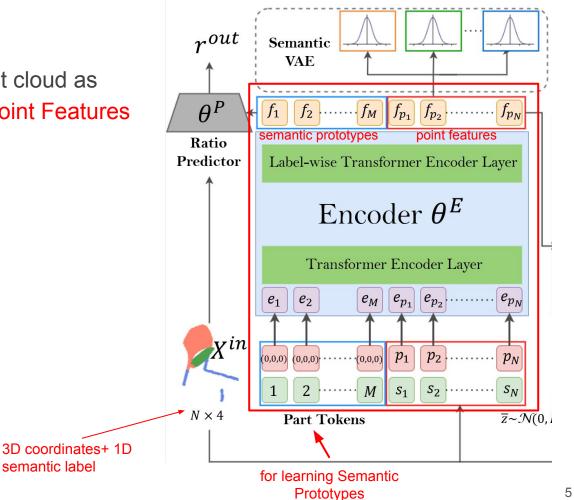
Method -- Overview

- Transformer-based Encoder-Decoder structure
 - Input(Xⁱⁿ): 3-D coordinate + 1-D semantic part label of partial point cloud
 - Output(X^{out}): Complete point cloud + semantic segmentation



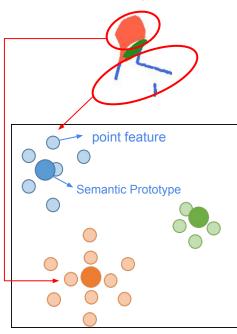
Method -- Encoding

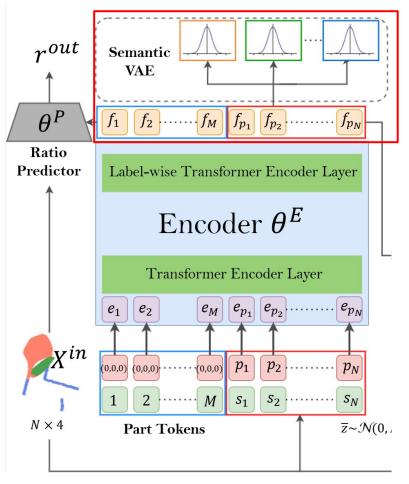
• Encoder: Encode input point cloud as Semantic Prototypes and Point Features



Method -- Encoding

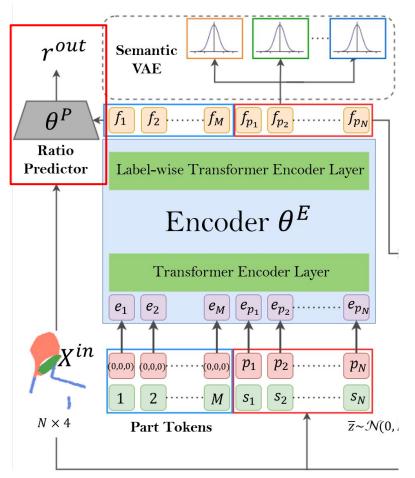
- Encoder : Encode input point cloud as Semantic Prototypes and Point Features
- Semantic VAE: Learns **feature distribution** for each semantic part





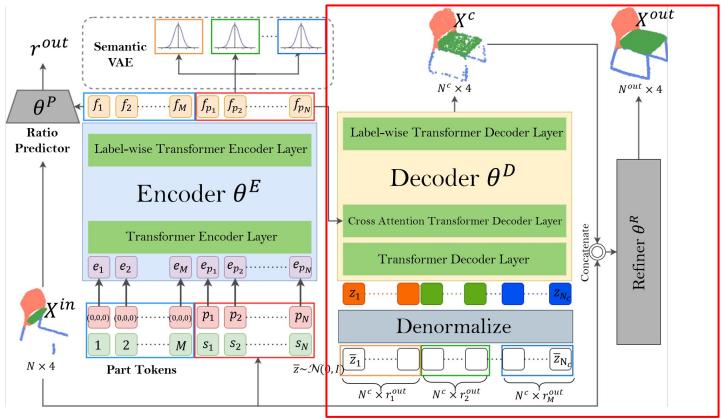
Method -- Encoding

- Encoder: Encode input point cloud as Semantic Prototypes and Point Features
- Semantic VAE: Learns **feature distribution** for each semantic part
- Ratio Predictor: predict r^{out} to prevent over-dense or sparse semantic parts



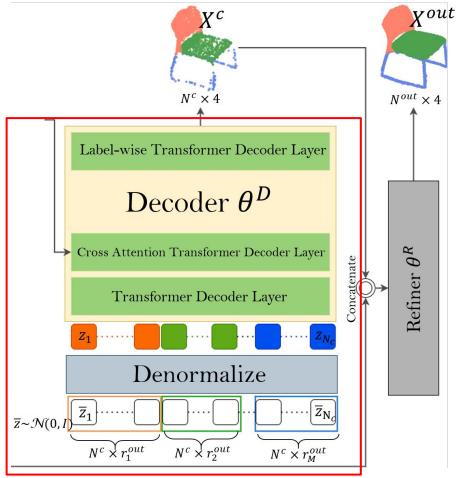
Method -- Decoding

• Decoding: using point features, semantic prototypes and r^{out} to generate X^{out}



Method -- Decoding

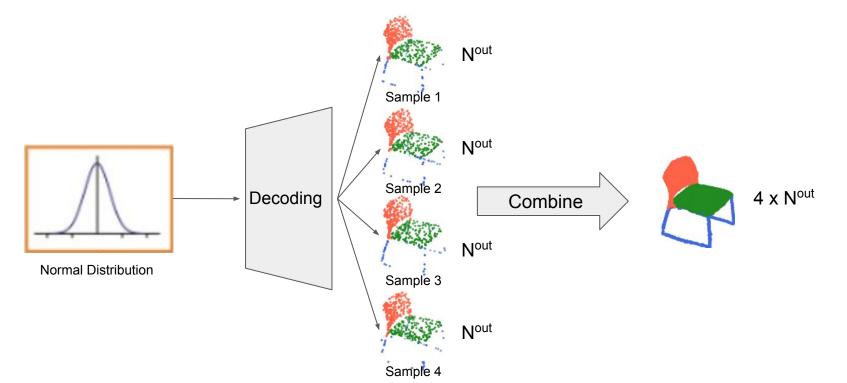
 Decoder: random sample noise from N~(0,I), denormalized by
Semantic Prototype and generate a coarse completion (X^c)



Method -- Special Property

Varying resolution

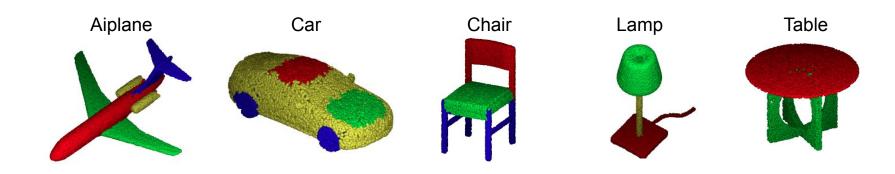
 Repeating the sampling and Decoding stage can directly increase the resolution of output point cloud, achieving varying resolution



10

Point Cloud Completion Dataset

- Subset of ShapeNet:
 - 5 different categories, each with 3~4 of semantic parts
 - Partial point cloud : rendered from eight different views
 - Complete point cloud : each with **16384** points



Dataset: Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d model repository. arXiv preprint arXiv:1512.03012, 2015. <u>https://arxiv.org/abs/1512.03012</u>

Quantitative Comparison

• Compare with current state-of-the-arts

Method	Airplane		Car		Chair		Lamp		Table		Avg.	
	CD	mIoU	CD	mIoU	CD	mIoU	CD	mIoU	CD	mIoU	CD	mIoU
PCN [1]	1.26	67.4	10.8	38.1	5.77	79.3	11.4	62.1	5.22	76.6	6.88	64.7
PMP-Net++ [11]	1.80	70.3	3.82	48.6	3.42	75.3	7.93	66.3	7.87	59.3	4.97	64.0
VRC-Net [12]	0.84	69.7	3.15	60.6	3.50	82.2	4.90	75.5	4.76	74.1	3.43	72.4
PoinTr [14]	1.88	53.6	3.73	50.8	3.01	79.2	4.55	60.5	2.97	76.1	3.23	64.0
SPoVT*	0.75	82.1	2.99	76.9	2.97	77.0	4.50	86.1	3.04	84.1	2.85	81.2
SPoVT (Ours)	0.73	82.6	2.86	82.5	2.36	85.2	4.12	91.5	2.50	86.5	2.51	85.7

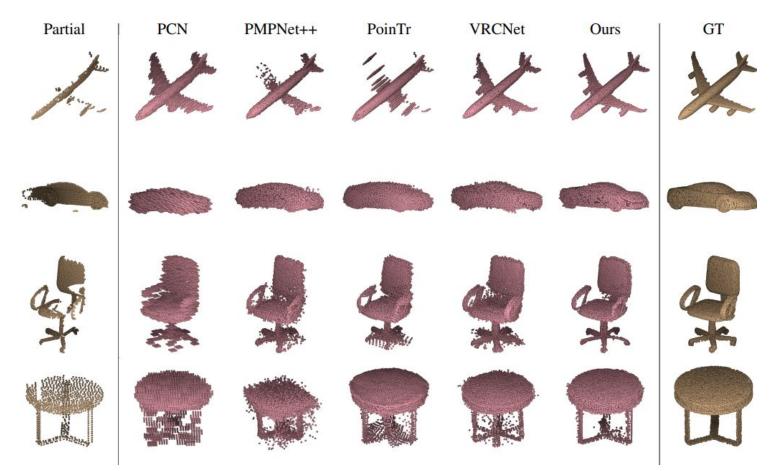
[1] Yuan, W., Khot, T., Held, D., Mertz, C., & Hebert, M. Pcn: Point completion network. In Proc. 3DV, 2018.

[2] Xin Wen, Peng Xiang, Zhizhong Han, Yan-Pei Cao, Pengfei Wan, Wen Zheng, and Yu-Shen Liu. Pmpnet++: Point cloud completion by transformer-enhanced multi-step point moving paths. IEEE Transactions on Pattern Analysis and Machine Intelligence (**TPAMI**), 2022.

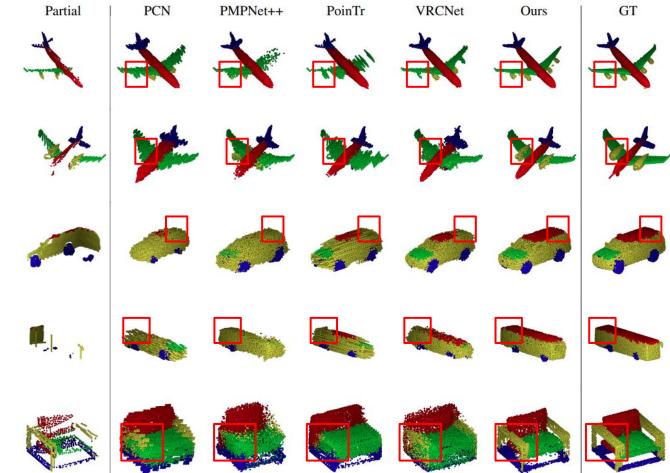
[3] Pan, L., Chen, X., Cai, Z., Zhang, J., Zhao, H., Yi, S., & Liu, Z. Variational Relational Point Completion Network. In Proc. CVPR, 2021.

[4] Yu, X., Rao, Y., Wang, Z., Liu, Z., Lu, J., & Zhou, J. Pointr: Diverse point cloud completion with geometry-aware transformers. In Proc. ICCV, 2021.

Qualitative Comparison of Completion Results

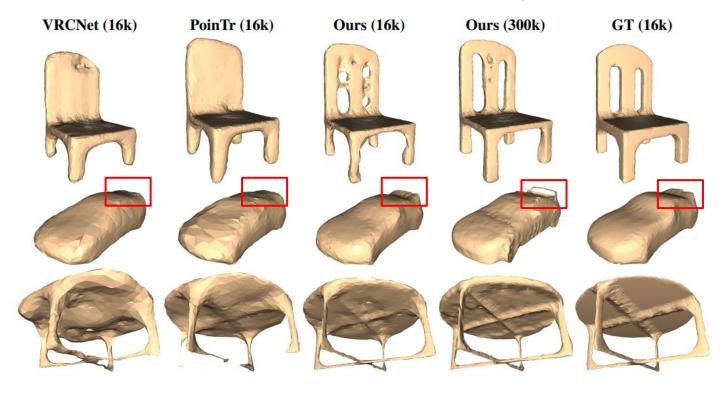


Qualitative Comparison of Segmentation Results



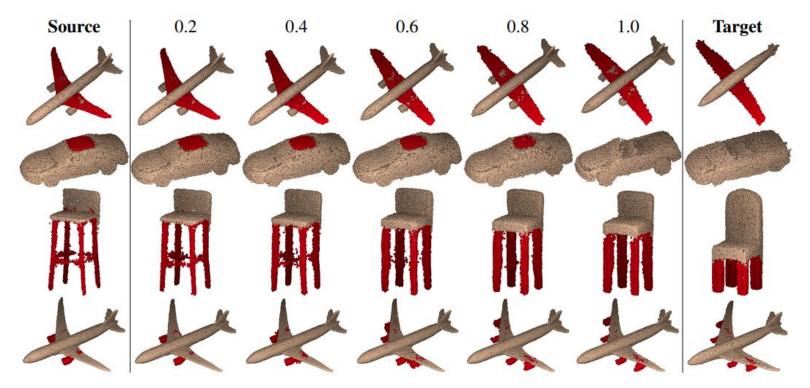
Surface Reconstruction (Mesh)

- Generate high resolution results via the Varying Resolution property
- Preserve more details for the reconstructed mesh objects



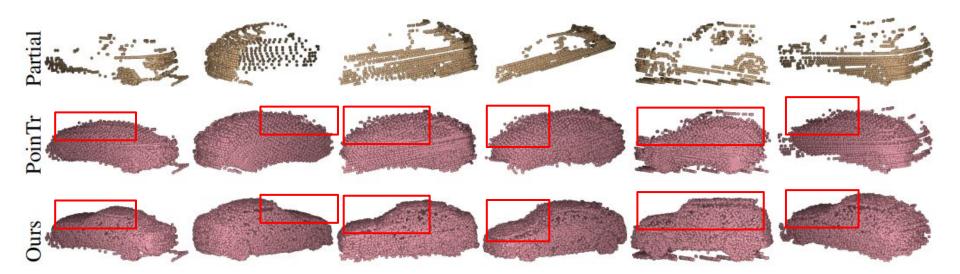
Part-wise Manipulation

• Achieve part-wise manipulation by interpolating between specific semantic prototypes of two different objects.



Real-world LiDAR Point Cloud Completion (KITTI dataset)

- Semantic labels of real-world LiDAR point cloud are not available
- Complete the point cloud after passing through a pre-trained segmentor



Thanks