

Matryoshka Representation Learning

Aditya Kusupati

Neurips 2022

Learned Representations

Motivation: Query-based Retrieval

• Applicable for large-scale classification with millions of labels

Web-scale Challenges

- Extremely large databases **100s of TB**
 - Linear dependence on representation size (*d*)
 - Embedding look-up much more expensive than featurization
- Require Approximate Nearest Neighbour Search (ANNS)
 Post-hoc compressed index
- Incapable of Multi-Granularity
 - Use same *high-d* embedding for all tasks
 - Retrain a model for *low-d* based on deployment constraints
 - Eg: *768-d* ViT image representation for all tasks

Adaptive Deployment – Goals

- **One representation** vector for all downstream tasks
 - No post-hoc compression or expensive feature selection
 - No retraining for specific resource constraints
- Accurate and efficient *low-d* embeddings
 - Baked within the *high-d* embedding Free
 - **Reduced costs** for expensive & high-recall shortlisting
 - As **accurate** as independently trained counterparts
- *High-d* embedding for **cheap** & precise re-ranking

Matryoshka Representation Learning - MRL

- Solve the same learning task at **multiple granularities** (log(d))
- Easily adaptable to any representation learning setup
 Scale, modality and task agnostic 1B images with ease
- **First** *k* **dims** form the required *low-d* embeddings
 - As accurate as retrained *low-d* counterparts
- Enable adaptive deployment
 - Accurate large-scale classification and retrieval
 - Based on task and resource constraints

🙆 MRL: Supervised Learning

Applications & Experiments

Classification

- Representation quality data, scale and modalities
- Adaptive classification

Retrieval

• Adaptive Retrieval

Analysis & Ablations

- Robustness, few-shot and long-tail learning
- Analysis across representation sizes and ablations

Classification

• Models + Data

- ResNet50 + ImageNet-1K
- ViT-B/16 + JFT-300M
- ALIGN: VIT-B/16 (V) + BERT-Base
- **Evaluation** on ImageNet-1K validation set
 - One-vs-All (*OVA*) top-1 & 1-Nearest Neighbour (*1-NN*) accuracy (%)
 - Interpolation between granularities
- Adaptive Classification
 - MRL classification with cascades across dimensions

Classification Accuracy - ImageNet OVA

- ResNet50 models trained on ImageNet-1K
- Same accuracy as independently trained *low-d* models (FF)

Representation Quality - ImageNet k-NN

- ResNet50 models trained on ImageNet-1K
- Other baselines fall off drastically at *low-dimensions*

Representation Quality - ImageNet k-NN

- ViT-B/16 models trained on JFT-300M and ALIGN (V+L)
- Scales to **1B images** w/o accuracy drop

Granularity Interpolation - ImageNet k-NN

- MRL models interpolate for intermediate dimensions
- Allows for extremely fine-grained deployment

Adaptive Classification

- Cascade the classification of an instance
 Increasing granularity within the Matryoshka Representation
- Adaptively choose the **confidence thresholds**
- Extremely useful for extremely-large output spaces
- Same accuracy as an highest capacity trained model

Adaptive Classification - ImageNet-1K

- ResNet50-MRL model trained on ImageNet-1K with cascades
- 14x smaller embedding size for same accuracy

Retrieval

- Query image \rightarrow Most relevant images from database
 - Same class / label
 - Evaluated using mean Average Precision @ k (k = 10, mAP@10)
- ResNet50 models trained on ImageNet-1K
- Datasets
 - ImageNet-1K: ~1.3M database & 50K query set 2.6 GFLOPs
 - ImageNet-4K (New!!): ~4.2M database & 200K query set 8.6 GFLOPs
 - Publicly available & subset of ImageNet-21K w/o ImageNet-1K overlap

Retrieval mAP@10 – ImageNet-1K

- Better mAP@10 as independently trained *low-d* models (FF)
- Similar recall for *low-d* representation as *high-d*

Adaptive Retrieval

Adaptive Retrieval

- Replace single-shot retrieval with highest dimension
- Shortlist with *M* = 200 data points with *low-d* (**D**_s)
 Re-rank with *high-d* (**D**_r)
- Match the maximum mAP@10 from original embedding
- Significantly lower FLOPs and inference time

Adaptive Retrieval - ImageNet-1K

- 14x real-world speed-up for the best mAP@10
- All real-world implementations use HNSW for shortlisting

Adaptive Retrieval - ImageNet-4K (Try it!!)

- 6x real-world speed-up for the best mAP@10
- Funnel retrieval alleviates the need for optimal D_s & D_r

Robustness

- **As robust** as independently trained *low-d* (FF) models
 - ImageNetV2/R/A/Sketch classification accuracy
 - For all representation sizes of MRL across models
- MRL models have more robust retrieval vs FF models
 Op to 3% better mAP@10 for ImageNetV2 query set (10K samples)
- MRL improves cosine similarity span for ALIGN
 Increases span between positive and random image-text pairs

Few-shot and Long-tail Learning

- MRL representations perform **comparably** to FF
 - On ImageNetV2 using Nearest Class Mean (NCM)
 - Across varying shots and number of classes
- Long-tail & sequential evaluation on FLUID
 - **Up to 2%** higher accuracy on novel classes in the tail
 - *Low-d* as **accurate** as *high-d* for pretrain classes in head & torso
 - *high-d* required to **differentiate** the low-shot classes

Analysis across Representation Sizes

- Per-class accuracy often increases barring some exceptions
 Super-class accuracy more consistent
- Routing leveraging disagreement \rightarrow improves accuracy by 4.6%

Analysis across Representation Sizes

• Graceful failing of *low-d* representations – clutter & super-class

Ablations

- Case for tuning relative loss weights
- Boosting 8-d by **2x** & 16-d by **1.5x** improves low-d accuracies

Model	MRL		MRL-8boost		MRL-8+16boost	
Rep. Size	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5
8	66.63	84.66	69.53	86.19	69.24	85.96
16	73.53	89.52	73.86	89.44	73.91	89.55
32	75.03	91.31	75.28	91.21	75.10	91.14
64	75.82	92.27	75.84	92.22	75.67	92.06
128	76.30	92.82	76.28	92.74	76.07	92.52
256	76.47	93.02	76.48	92.97	76.22	92.72
512	76.65	93.13	76.56	93.09	76.35	92.85
1024	76.76	93.22	76.71	93.21	76.39	92.98
2048	76.80	93.32	76.76	93.28	76.52	93.05

Ablations

• MRL for pretrained models – fine tuning ResNet50 on ImageNet-1K

Rep. Size	4.2 conv3, fc	4.2 conv3, conv2, fc	4.2 full, fc	fc	All (MRL)
8	36.11	54.78	60.02	5.15	66.63
16	58.42	67.26	70.10	13.79	73.53
32	67.81	71.62	72.84	32.52	75.03
64	72.42	73.61	74.29	52.66	75.82
128	74.41	74.67	75.03	64.60	76.30
256	75.30	75.23	75.38	69.29	76.47
512	75.96	75.47	75.64	70.51	76.65
1024	76.18	75.70	75.75	70.19	76.76
2048	76.44	75.96	75.97	69.72	76.80

Future Work

- Optimizing the relative loss weightings
 Pareto optimal accuracy vs-efficiency trade-off
- Specific losses across fidelities for adaptive deployment
 e.g. high recall for 8-dimension and robustness for 2048-dimension
- Learning a search data-structure, like differentiable k-d tree
 w/ Matryoshka Representation to enable task & cost aware retrieval
- Joint optimization of multiobjective MRL + end-to-end learnable search data-structure – data-driven adaptive web-scale retrieval

Conclusions

github.com/RAIVNLab/MRL adityakusupati.com

- MRL ⁶/₂: A general purpose method adaptable to any representation learning setup to obtain flexible representations
 Scale, task and modality agnostic
- Multi-granularity databases for free at web-scale
 - *Low-d* database learned index fitting in RAM
 - Complementary to **ANNS** and learned indices like **LLC**
- Up to 14× faster yet accurate web-scale classification & retrieval
- Framework for analyzing information bottlenecks