

Deliberated Domain Bridging for Domain Adaptive Semantic Segmentation

Lin Chen^{1,2}, Zhixiang Wei¹, Xin Jin³, Huaian Chen¹, Miao Zheng², Kai Chen², Yi Jin¹

University of Science and Technology of China¹ Shanghai Al Laboratory² EIT Institute for Advanced Study³

Introduction

What is Domain Adaptive Semantic Segmentation (DASS)?

The Goal:

- Train segmentation models on a labeled source domain
- Generalize models for the target domain that has different data distribution.

The Main Roads for DASS:

- Directly transfer by adversarial training
- Gradually transfer by constructing intermediate domains, which is dubbed domain bridging (DB).

Four Types of Domain Bridging (DB):

- Input space (style-transfer based)
- Feature space
- Output space (self-training based)
- Joint space (data-mixing based)

Introduction

Motivation

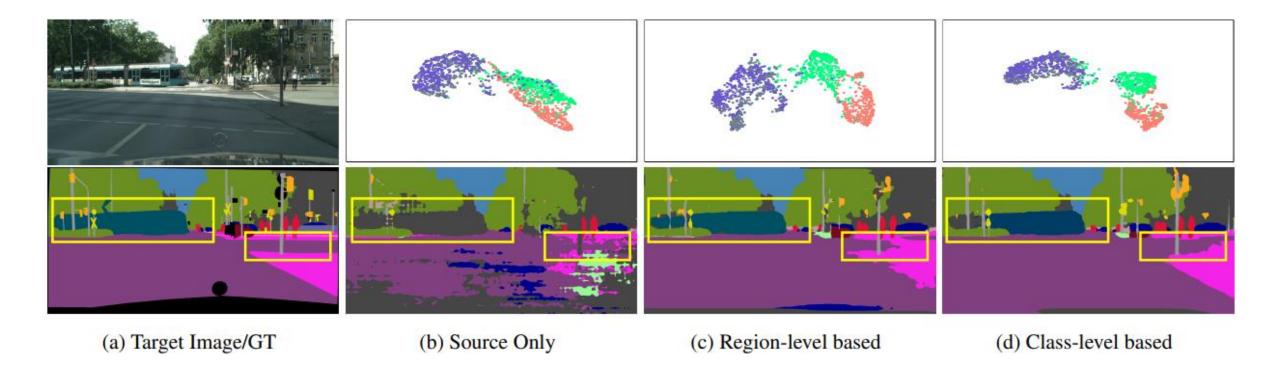
 We conduct comprehensive experiments about the existing DB-based methods with the same benchmark and pipeline.

(a) Comparison of style transfer-based DB methods.

Method	mIoU
Source only	26.3±0.9
+ CycleGAN [72] (S→T)	37.8±0.4
+ Color Transfer [47] (S \rightarrow T)	38.7±1.2
+ FDA [61] (S \rightarrow T)	41.3±0.6
Pseudo Labeling	30.7±0.4
+ CycleGAN $(T\rightarrow S)$	28.9±0.5
+ Color Transfer $(T \rightarrow S)$	31.4±0.5
+ FDA $(T \rightarrow S)$	42.6 ±0.6

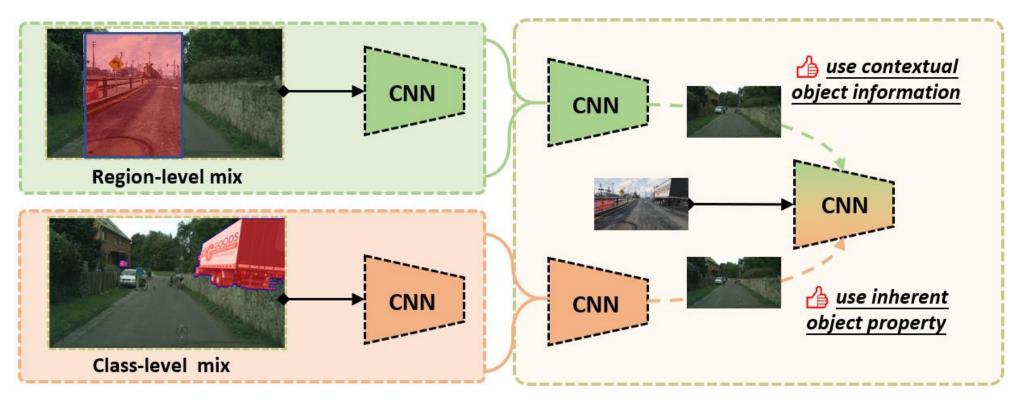
(b) Comparison of global blending-based different groups. and region-based DB methods.

Method	mIoU
Pseudo Labeling	30.7±0.4
+ Mixup [63]	31.6±0.6
+ CowMix [14]	50.7±0.4
+ FMix [18]	50.0±0.2
+ CutMix [62]	54.9 ±0.2
+ ClassMix [43]	54.3±1.4


(c) Comparison of combined DB methods of different groups.

Method	mIoU
Pseudo Labeling	30.7±0.4
+ CutMix + CycleGAN (S \rightarrow T)	47.6±1.1
+ ClassMix + CycleGAN (S \rightarrow T)	53.9±1.0
+ CutMix + FDA (S \rightarrow T)	46.8±1.2
+ ClassMix + FDA (S \rightarrow T)	50.6±1.1
+ CowMix ⊕ CutMix	51.7±0.4
+ FMix \oplus CutMix	50.6±0.7
+ FMix ⊕ ClassMix	54.5±0.5
+ CutMix \oplus ClassMix	55.2 ±1.0

Introduction


Motivation

We find that the region-level based DB-method and class-level based DB-method are complement with each other.

Methodology

Deliberated Domain Bridging for DASS

(a) Step 1: Dual-Path Domain Bridging (DPDB)

(b) Step 2: Cross-path Knowledge Distillation (CKD)

Experiments

■ State-of-the-art performance on GTA → Cityscapes

Method	road	sidewalk	building	wall	fence	pole	light	sign	vege.	terrain	sky	person	rider	car	truck	snq	train	motor	bike	mIoU
Source only	75.8	16.8	77.2	12.5	21.0	25.5	30.1	20.1	81.3	24.6	70.3	53.8	26.4	49.9	17.2	25.9	6.5	25.3	36.0	36.6
CyCADA [22]	86.7	35.6	80.1	19.8	17.5	38.0	39.9	41.5	82.7	27.9	73.6	64.9	19.0	65.0	12.0	28.6	4.5	31.1	42.0	42.7
ADVENT [52]	89.4	33.1	81.0	26.6	26.8	27.2	33.5	24.7	83.9	36.7	78.8	58.7	30.5	84.8	38.5	44.5	1.7	31.6	32.4	45.5
BDL [31]	91.0	44.7	84.2	34.6	27.6	30.2	36.0	36.0	85.0	43.6	83.0	58.6	31.6	83.3	35.3	49.7	3.3	28.8	35.6	48.5
FADA [53]	91.0	50.6	86.0	43.4	29.8	36.8	43.4	25.0	86.8	38.3	87.4	64.0	38.0	85.2	31.6	46.1	6.5	25.4	37.1	50.1
CAG [65]	90.4	51.6	83.8	34.2	27.8	38.4	25.3	48.4	85.4	38.2	78.1	58.6	34.6	84.7	21.9	42.7	41.1	29.3	37.2	50.2
IAST [40]	93.8	57.8	85.1	39.5	26.7	26.2	43.1	34.7	84.9	32.9	88.0	62.6	29.0	87.3	39.2	49.6	23.2	34.7	39.6	51.5
DACS [50]	89.9	39.7	87.9	30.7	39.5	38.5	46.4	52.8	88.0	44.0	88.8	67.2	35.8	84.5	45.7	50.2	0.0	27.3	34.0	52.1
SAC [1]	90.4	53.9	86.6	42.4	27.3	45.1	48.5	42.7	87.4	40.1	86.1	67.5	29.7	88.5	49.1	54.6	9.8	26.6	45.3	53.8
CTF [38]	92.5	58.3	86.5	27.4	28.8	38.1	46.7	42.5	85.4	38.4	<u>91.8</u>	66.4	37.0	87.8	40.7	52.4	<u>44.6</u>	41.7	59.0	56.1
ProDA [64]	91.5	52.4	82.9	42.0	35.7	40.0	44.4	43.8	87.0	43.8	79.5	66.5	31.4	86.7	41.1	52.5	0.0	45.4	53.8	53.7
ProDA+distill	87.8	56.0	79.7	<u>46.3</u>	44.8	45.6	53.5	53.5	88.6	45.2	82.1	70.7	39.2	88.8	45.5	59.4	1.0	48.9	56.4	57.5
UndoDA [32]	89.1	34.3	83.6	38.3	27.5	28.9	34.7	17.6	84.2	41.0	85.1	57.8	33.7	85.1	38.5	41.3	30.7	31.1	48.0	49.0
UndoDA+ProDA	92.9	52.7	87.2	39.4	41.3	43.9	55.0	52.9	<u>89.3</u>	<u>48.2</u>	91.2	71.4	36.0	90.2	<u>67.9</u>	59.8	0.0	48.5	59.3	59.3
CPSL [28]	91.7	52.9	83.6	43.0	32.3	43.7	51.3	42.8	85.4	37.6	81.1	69.5	30.0	88.1	44.1	59.9	24.9	47.2	48.4	55.7
CPSL+distill	92.3	59.9	84.9	45.7	29.7	<u>52.8</u>	<u>61.5</u>	<u>59.5</u>	87.9	41.5	85.0	<u>73.0</u>	35.5	90.4	48.7	<u>73.9</u>	26.3	<u>53.8</u>	53.9	60.8
Source only	60.4	15.1	58.3	8.7	21.3	20.9	33.2	22.4	77.7	8.6	71.3	55.8	13.2	77.0	22.8	22.1	0.4	14.1	6.1	32.1
DDB(Ours)	<u>95.3</u>	<u>67.4</u>	<u>89.3</u>	44.4	<u>45.7</u>	38.7	54.7	55.7	88.1	40.7	90.7	70.7	<u>43.1</u>	<u>92.2</u>	60.8	67.6	34.2	48.7	<u>63.7</u>	<u>62.7</u>

Experiments

■ State-of-the-art performance on GTA + Synscapes → Cityscapes

Method	road	sidewalk	building	wall	fence	pole	light	sign	vege.	terrain	sky	person	rider	car	truck	snq	train	motor	bike	mIoU
Source only AdaptSeg [51] ADVENT [52]	89.3	47.3	83.6	39.0 40.3 39.4				42.5	86.7	45.5	84.5		38.0		34.9	48.3		30.7	52.3	51.6 53.7 54.2
MDAN [67] MADAN [68] MSCL [19]		61.0	86.4	42.7 43.3 44.9	32.1	40.6	49.0	40.3 44.4 42.5	87.3	47.7	89.4	61.7	36.3	87.5	35.5	45.8	39.0 31.0 53.1	33.5	52.1	55.2 55.7 59.0
Source only DDB(Ours)	82.5 96.9		79.0 90.0	27.2 54.4	31.7 48.6	40.8 47.6	53.0 <u>61.1</u>	45.6 66.3	85.3 89.7	30.9 48.4	80.6 93.4			78.3 92.3	39.0 60.8	42.7 74.7	9.6 58.9		55.9 71.4	50.9 69.0

■ State-of-the-art performance on GTA → Cityscapes + Mapillary

Method	Target	road	sidewalk	building	wall	fence	pole	light	sign	vege.	terrain	sky	person	rider	car	truck	pns	train	motor	bike	mIoU Avg.
Source only	C M	53.3 55.7	15.2 27.1	56.6 55.3	8.2 9.9	26.2 20.6	21.2 22.7	30.7 33.3	22.2 31.6			53.3 70.6	55.3 53.5	15.5 30.9	72.9 72.7	21.5 32.3	4.9 11.6	0.9 5.6	20.2 36.3	7.4 14.9	30.1 35.5 32.8
CCL [25]	C M		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	45.1 48.8 46.8
ADAS [26]	C M	88.3 84.2	32.2 33.9	82.2 78.5	23.8 25.5	24.2 24.5	30.5 35.6	35.0 39.8	33.3 <u>52.4</u>	83.3 71.2	37.9 40.2	85.1 92.4	56.7 58.7	21.9 38.7	84.6 82.7	38.6 44.4	46.2 46.4	0.5 15.2	33.5 37.8	33.3 32.2	45.8 49.2 47.5
DDB(Ours)	C M	93.5 89.3	67.8 60.8	88.3 81.4	38.4 35.9	45.6 38.4	32.3 32.9	<u>54.2</u> <u>48.5</u>		89.2 69.9		91.6 90.1	69.1 62.6	43.2 49.6	84.6 86.0	63.6 62.7	61.8 62.9	15.1 26.1	<u>44.1</u> <u>52.0</u>	<u>58.6</u> <u>42.8</u>	$\frac{60.4}{56.9}$ 58.6

Thanks, Q & A

Corresponding:

chlin@mail.ustc.edu.cn

