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Motivation
• Constraint of ViT Applications: Huge FLOPs

Model FLOPs Memory Usage
ViT [1]-H 162GB 2528MB
DeiT[2]-B 16.8GB 346.2MB
Swin[3]-S 8.7GB 199.8MB

*MB=10242bit, GB=10243bit

• Deploying NNs on NVIDIA Jetson TX2 [4]：

non real-time computation 

[1] Alexey Dosovitskiy, et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv:2010.11929, 2020
[2] Hugo Touvron, Matthieu Cord,et al. Training data-efficient image transformers & distillation through attention. In Proc. of ICML, 2020
[3] Ze Liu, Yutong Lin, et al. Swin transformer: Hierarchical vision transformer using shifted windows. In Proc. Of ICCV, 2020
[4] https://www.nvidia.cn/autonomous-machines/embedded-systems/jetson-tx2/



2. Challenge

1. Quantized ViT scheme

Baseline of Quantized ViT

Symmetric weight quantization:

Asymmetric activation quantization: 
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2. Challenge

2. Quantized MHSA

Baseline of Quantized ViT

MLP layer quantization: 

Attention weight quantization: 

𝐪 = Q−Linear' 𝑥 , 𝐤 = Q−Linear( 𝑥 , 𝐯 = Q−Linear)(𝑥)

𝐀 =
1
𝑑
(𝑄% 𝐪 ⨂𝑄% 𝐤 *)

𝑄𝐀 = 𝑄% softmax(𝐀)
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3. Quantized ViT Architecture Bottleneck

Baseline of Quantized ViT

Quantizing query, key, value 
and attention weight brings the 
most significant drop



2. Challenge

4. Quantized ViT Optimization Bottleneck

Baseline of Quantized ViT



3. Method
Framework and Proposed Q-ViT
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Patch Embedding Teacher activationsDistribution Guided Distillation (DGD)
Information Rectification Module (IRM)



2. Challenge

1. Information Rectification Module -> Solving the Architecture Bottleneck

Framework and Proposed Q-ViT

Information rectification

Information entropy maximization

𝑄% J𝐪 = 𝑄%
𝐪 − 𝜇 𝐪 + 𝛽𝐪
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2. Challenge

2. Distributed Guided Distillation -> Solving the Optimization Bottleneck

Framework and Proposed Q-ViT

Patch-based similarity in query and key

Final distillation loss

V𝐺𝐪!
/ = J𝐪0/ ⋅ J𝐪0/

1, 𝐺𝐪!
/ =

V𝐺𝐪!
/

V𝐺𝐪!
/

-

V𝐺𝐤!
/ = P𝐤0/ ⋅ P𝐤0/

1
, 𝐺𝐤!

/ =
V𝐺𝐤!
/

V𝐺𝐤!
/

-

ℒDGD = \
/∈ 3,5

\
0∈ 3,6

𝐺𝐪!;*
/ − 𝐺𝐪!

/
-
+ 𝐺𝐤!;*

/ − 𝐺𝐤!
/

-
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Ablation Study

Experiments and Results 

• The fully quantized ViT baseline suffers a severe performance drop on classification task (11.7%, 
2.1% and 0.2% with 2/3/4-bit, respectively). 

• The IRM improve the 2-bit Baseline by 1.7% and the DGD achieves 2.3% performance improvement. 
• While combining the IRM and DGD together, the performance improvement achieves 3.8%. 
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Main Results

Experiments and Results 

For DeiT-S:
• 4bit Q-ViT surpasses full-precision DeiT-S (80.9% vs. 

79.9% ). 
• 2-bit model significantly compresses the DeiT-S by 21.5x

on FLOPs. 

For larger DeiT-B:
• Q-ViT outperforms the 2/3/4-bit Baseline by 3.8%, 1.7% 

and 1.9% , a large margin. 
• 2/3/4-bit Q-ViT significantly compresses the DeiT-B by 

21x, 12x and 7.6x on FLOPs. 
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Main Results

Experiments and Results 

For Swin-T:
• Q-Swin-T outperforms the 2/3/4-bit Baseline method by 

4.1% , 2.1% and 2.0% , a large margin. 
• Our 4-bit Q-ViT surpasses the full-precision Swin-T 

by 1.3%.

For larger Swin-S: 
• Our method outperforms the 2/3/4-bit Baseline by 4.3%, 

1.8% and 1.5% . 
• 4-bit Q-ViT surpasses the full-precision by 1.1% 

counterpart using Swin-S and significantly compresses 
the Swin-S by 7.9x on FLOPs.
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Quantitative Results

Experiments and Results 
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Quantitative Results

Experiments and Results 

With the proposed IRM and 
DGD, the Q-ViT retains the 
distribution over query and 
key from the full-precision 
counterpart.



2. Challenge
Conclusion

l We introduce Q-ViT to improve the fully quantized ViTs with high 
compression ratio and competitive performance. 

l We first build a theoretical framework of fully quantized ViT and analysis the 
bottlenecks of the fully quantized ViT baseline. 

l We then introduce Information Rectification Module and Distribution Guided 
Distillation to Q-ViT for performance improvement.

l Our work gives an insightful analysis and effective solution about the crucial 
issues in ViT full quantization, which blazes a promising path for the extreme 
compression of ViT.

l Our proposed Q-ViTs achieve comparable performance with full-precision 
counterparts  with ultra-low bit weights and activations. 



Thank you for listening


