

Decoupling Classifier for Boosting Few-shot Object Detection and Instance Segmentation

Bin-Bin Gao¹, Xiaochen Chen¹, Zhongyi Huang¹, Congchong Nie¹, Jun Liu¹ Jinxiang Lai¹, Guannan Jiang², Xi Wang² and Chengjie Wang¹

¹Tencent YouTu Lab, ²CATL

Nov. 28— Dec. 9, 2022

Decoupling Classifier for Boosting Few-shot Object Detection and Instance Segmentation (NeurIPS 22)

Introduction

Few-shot object detection/ instance segmentation

Few-shot object detection (FSOD) aims to detect novel objects with very few novel instances and abundant base instances.

General idea: a few-shot model should be able to transfer previous knowledge about base classes to help future detection tasks on novel classes.

Introduction

Few-shot learning paradigm

Meta-learning paradigm aims to acquire task-level knowledge on base classes and generalize better to novel classes.

- ✓ Meta RCNN, *ICCV 19;*
- ✓ FSRW, *ICCV 19;*
- ✓ FSDetView, ECCV 20;
- ✓ TIP, *CVPR 21;*
- ✓ FCT, CVPR 22;

These methods suffer from a complicated training process (episodic training) and data organization (support-query pair).

Introduction

Few-shot learning paradigm

Transfer-learning mainly follows a fully supervised framework.

- ✓ TFA, *ICML 19*,
- ✓ MPSR, *ECCV 20;*
- ✓ FSCE, *CVPR 21;*
 - These transfer-learning methods is more simple ✓ SRR-FSD, CVPR 21; and more efficient.
 - ✓ DeFRCN, *ICCV 21;*
 - ✓ FADI, *NeurIPS 21;*

Motivation

Missing label issue

(c) a one-shot labeled image

Instance-level few-shot setting: an instance as a shot for each class. This easily meets missing label issue.

Does a few-shot model learn well under missing label conditions?

Motivation

Missing labele issue

Biased classification

The box regression and mask segmentation heads only accept clear positive instances and thus no negative effects.

However, the classification head may be confused by missing labeled instances and thus results in a biased classification towards incorrectly recognizing foreground objects as background.

Can we design a method to mitigate the biased classification?

Proposed Method

Decoupling Classifier

We propose a simple but effective method that decouples the standard classifier into two parallel heads to process clear positive instances and negative instances with missing labels.

Proposed Method

Decoupling Classifier

Positive head:

standard softmax function and cross-entropy loss.

Negative head:

The only change is to introduce an image-level label vector \vec{m} into the softmax function.

Proposed Method

The core code for decoupling classifier

The core implementation only uses one line of code but leads to consisten<u>t improvements.</u>

Algorithm 1 PyTorch-like Style Code for Decoupling Classifier.

```
def dc_loss(x, y, m):
 0.0.0
 Compute loss for the decoupling classifier.
 Return scalar Tensor for single image.
 Args:
     x: predicted class scores in [-inf, +inf], x's size: N x (1+C), where N is the
        number of region proposals of one image.
     y: ground-truth classification labels in [0, C-1], y's size: N x 1, where [0,C-1]
        represent foreground classes and C-1 represents the background class.
     m: image-level label vector and its element is 0 or 1, m's size: 1 \times (1+C)
 Returns:
     loss
 .....
 # background class index
 N = x.shape[0]
 bg_label = x.shape[1]-1
 # positive head
 pos_ind = y!=bg_label
 pos_logit = x[pos_ind,:]
 pos_score = F.softmax(pos_logit, dim=1) # Eq. 4
 pos_loss = F.nll_loss(pos_score.log(), y[pos_ind], reduction="sum") #Eq. 5
 # negative head
 neg_ind = y==bg_label
 neg logit = x[neg ind.:]
neg_score = F.softmax(m.expand_as(neg_logit)*neg_logit, dim=1) #Eq. 8
neg_loss = F.nll_loss(neg_score.log(), y[neg_ind], reduction="sum") #Eq. 9
 # total loss
 loss = (pos_loss + neg_loss)/N #Eq. 6
 return loss
```

Experiments

Comparisons with state-of-the-arts

Table 1: Comparisons with SOTA FSOD methods on PASCAL-VOC.

Mathada / Shota		wla		N	ovel Set	t 1		Novel Set 2					Novel Set 3				
Methods / Shots		wig	1	2	3	5	10	1	2	3	5	10	1	2	3	5	10
FRCN-ft 39	ICCV 19	X	13.8	19.6	32.8	41.5	45.6	7.9	15.3	26.2	31.6	39.1	9.8	11.3	19.1	35.0	45.1
FSRW 17	ICCV 19	X	14.8	15.5	26.7	33.9	47.2	15.7	15.2	22.7	30.1	40.5	21.3	25.6	28.4	42.8	45.9
MetaDet 34	ICCV 19	X	18.9	20.6	30.2	36.8	49.6	21.8	23.1	27.8	31.7	43.0	20.6	23.9	29.4	43.9	44.1
MetaRCNN 39	ICCV 19	X	19.9	25.5	35.0	45.7	51.5	10.4	19.4	29.6	34.8	45.4	14.3	18.2	27.5	41.2	48.1
TFA 33	ICML 20	×	39.8	36.1	44.7	55.7	56.0	23.5	26.9	34.1	35.1	39.1	30.8	34.8	42.8	49.5	49.8
MPSR 35	ECCV 20	X	41.7	-	51.4	55.2	61.8	24.4	-	39.2	39.9	47.8	35.6	-	42.3	48.0	49.7
TIP 19	CVPR 21	X	27.7	36.5	43.3	50.2	59.6	22.7	30.1	33.8	40.9	46.9	21.7	30.6	38.1	44.5	50.9
DCNet 16	CVPR 21	X	33.9	37.4	43.7	51.1	59.6	23.2	24.8	30.6	36.7	46.6	32.3	34.9	39.7	42.6	50.7
CME 20	CVPR 21	×	41.5	47.5	50.4	58.2	60.9	27.2	30.2	41.4	42.5	46.8	34.3	39.6	45.1	48.3	51.5
FSCE 31	CVPR 21	X	44.2	43.8	51.4	61.9	63.4	27.3	29.5	43.5	44.2	50.2	37.2	41.9	47.5	54.6	58.5
SRR-FSD 43	CVPR 21	X	47.8	50.5	51.3	55.2	56.8	32.5	35.3	39.1	40.8	43.8	40.1	41.5	44.3	46.9	46.4
FADI 🚹	NeurIPS 21	X	50.3	54.8	54.2	59.3	63.2	30.6	35.0	40.3	42.8	48.0	45.7	49.7	49.1	55.0	59.6
FCT 13	CVPR 22	X	38.5	49.6	53.5	59.8	64.3	25.9	34.2	40.1	44.9	47.4	34.7	43.9	49.3	53.1	56.3
DeFRCN [†] [28]	ICCV 21	x	46.2	56.4	59.3	62.4	63.7	32.6	39.9	44.5	48.3	51.8	39.8	49.9	52.6	56.1	59.7
Ours		X	46.2	57.4	59.9	62.9	64.5	32.6	39.9	43.4	47.9	51.3	40.3	50.5	53.8	56.9	60.7
DeFRCN * 28	ICCV 21	X	53.6	57.5	61.5	64.1	60.8	30.1	38.1	47.0	53.3	47.9	48.4	50.9	52.3	54.9	57.4
Ours *		X	56.6	59.6	62.9	65.6	62.5	29.7	38.7	46.2	48.9	48.1	47.9	51.9	53.3	56.1	59.4

Table 2: Comparisons on MS-COCO

	=						
Methods / Shots		1	2	3	5	10	30
FRCN-ft 39	ICCV 19	1.0	1.8	2.8	4.0	6.5	11.1
FSRW 17	ICCV 19	-	-	-	-	5.6	9.1
MetaDet 34	ICCV 19	-	-	-	-	7.1	11.3
MetaRCNN 39	ICCV 19	-	-	-	-	8.7	12.4
TFA 33	ICML 20	4.4	5.4	6.0	7.7	10.0	13.7
MPSR 35	ECCV 20	5.1	6.7	7.4	8.7	9.8	14.1
FSDetView 38	ICCV 20	4.5	6.6	7.2	10.7	12.5	14.7
TIP 19	CVPR 21	-	-	-	-	16.3	18.3
DCNet 16	CVPR 21	-	-	-	-	12.8	18.6
CME 20	CVPR 21	-	-	-	-	15.1	16.9
FSCE 31	CVPR 21	-	-	-	-	11.1	15.3
SRR-FSD 43	CVPR 21	-	-	-	-	11.3	14.7
FADI 🚹	NeurIPS 21	5.7	7.0	8.6	10.1	12.2	16.1
FCT 13	CVPR 22	5.1	7.2	9.8	12.0	15.3	20.2
DeFRCN [†] 28	ICCV 21	7.7	11.4	13.3	15.5	18.5	22.5
Ours		8.1	12.1	14.4	16.6	19.5	22.7

Table 3: Comparisons with SOTA gFSOD methods on PASCAL-VOC.

Mathada / Shota			Novel Set 1					Novel Set 2					Novel Set 3				
Wiethous / Shots		w/g	1	2	3	5	10	1	2	3	5	10	1	2	3	5	10
FRCN-ft 39	ICCV 19	1	9.9	15.6	21.6	28.0	52.0	9.4	13.8	17.4	21.9	39.7	8.1	13.9	19.0	23.9	44.6
FSRW 17	ICCV 19	1	14.2	23.6	29.8	36.5	35.6	12.3	19.6	25.1	31.4	29.8	12.5	21.3	26.8	33.8	31.0
TFA 33	ICML 20	1	25.3	36.4	42.1	47.9	52.8	18.3	27.5	30.9	34.1	39.5	17.9	27.2	34.3	40.8	45.6
FSDetView 38	ECCV 20	1	24.2	35.3	42.2	49.1	57.4	21.6	24.6	31.9	37.0	45.7	21.2	30.0	37.2	43.8	49.6
DeFRCN 28	ICCV 21	1	40.2	53.6	58.2	63.6	66.5	29.5	39.7	43.4	48.1	52.8	35.0	38.3	52.9	57.7	60.8
Ours		1	45.8	59.1	62.1	66.8	68.0	31.8	41.7	46.6	50.3	53.7	39.6	52.1	56.3	60.3	63.3

Table 4: Comparisons with SOTA gFSOD methods on MS-COCO.

		-					,											
Method / Shots		1			2			3			5			10			30	
inetiou / bilots	0	В	Ν	0	В	Ν	0	В	Ν	0	В	Ν	0	В	N	0	В	Ν
FRCN-ft 39	16.2	21.0	1.7	15.8	20.0	3.1	15.0	18.8	3.7	14.4	17.6	4.6	13.4	16.1	5.5	13.5	15.6	7.4
TFA 33	24.4	31.9	1.9	24.9	31.9	3.9	25.3	32.0	5.1	25.9	41.2	7.0	26.6	32.4	9.1	28.7	34.2	12.1
FSDetView 38			3.2			4.9			6.7			8.1			10.7			15.9
DeFRCN 28	24.4	30.4	4.8	25.7	31.4	8.5	26.6	32.1	10.7	27.8	32.6	13.6	29.7	34.0	16.8	31.4	34.8	21.2
Ours	27.4	34.4	6.2	28.6	34.7	10.4	29.4	34.9	12.9	30.2	35.0	15.7	31.4	35.7	18.3	32.3	35.8	21.9

gFSOD:

Our method significantly outperforms the SOTA by a large margin;

FSOD:

Ours method is also better than the SOTA under most cases.

Experiments

Comparisons with state-of-the-arts

Table 5: Comparisons with SOTA <i>FSIS</i> methods on MS-COCO.														
Methods		Tasks	sks 1		2		3		5		10		3	0
			AP	AP50	AP	AP50								
Meta R-CNN [39]	ICCV 19		-	-	-	-	-	-	3.5	9.9	5.6	14.2	-	-
MTFA 10	CVPR 21		2.47	4.85	-	-	-	-	6.61	12.32	8.52	15.53	-	-
iMTFA 10	CVPR 21	Det	3.28	6.01	-	-	-	-	6.22	11.28	7.14	12.91	-	-
Mask-DeFRCN [†] 28	ICCV 21		7.54	14.46	11.01	20.20	13.07	23.28	15.39	27.29	18.72	32.80	22.63	38.95
Ours			8.09	15.85	11.90	22.39	14.04	25.74	16.39	29.96	19.33	34.78	22.73	40.24
Meta R-CNN [39]	ICCV 19		-	-	-	-	-	-	2.8	6.9	4.4	10.6	-	-
MTFA 10	CVPR 21		2.66	4.56	-	-	-	-	6.62	11.58	8.39	14.64	-	-
iMTFA 10	CVPR 21	Seg	2.83	4.75	-	-	-	-	5.24	8.73	5.94	9.96	-	-
Mask-DeFRCN [†] [28]	ICCV 21		6.69	13.24	9.51	18.58	11.01	21.27	12.66	24.58	15.39	29.71	18.28	35.20
Ours			7.18	14.33	10.31	20.43	11.85	23.24	13.48	26.67	15.85	31.33	18.34	35.99

Table 6: Comparisons with SOTA *gFSIS* methods on MS-COCO.

				Object I	Detection	l I	Instance Segmentation							
Shots	Methods	Overall		Ba	ise	No	vel	Ove	erall	Ba	ise	No	vel	
		AP	AP50	AP	AP50	AP	AP50	AP	AP50	AP	AP50	AP	AP50	
	Base-Only			39.86	59.25					32.58	55.12			
	iMTFA 10	21.67	31.55	27.81	40.11	3.23	5.89	20.13	30.64	25.90	39.28	2.81	4.72	
1	Mask-DeFRCN [†] [28]	23.82	35.70	30.11	44.42	4.95	9.55	19.58	33.38	24.63	41.57	4.45	8.81	
	Ours	27.35	42.55	34.35	52.46	6.34	12.79	22.45	39.33	28.03	48.60	5.72	11.53	
2	Mask-DeFRCN [†] 28	25.42	38.31	31.06	45.82	8.52	15.79	21.09	35.92	25.61	43.03	7.54	14.59	
2	Ours	28.63	44.74	34.67	52.82	10.52	20.49	23.73	41.49	28.52	49.12	9.38	18.62	
2	Mask-DeFRCN [†] 28	26.54	40.01	31.77	46.83	10.87	19.55	22.04	37.48	26.22	43.95	9.48	18.06	
5	Ours	29.59	46.21	35.07	53.30	13.15	24.95	24.55	42.81	28.91	49.61	11.46	22.43	
	iMTFA 10	19.62	28.06	24.13	33.69	6.07	11.15	18.22	27.10	22.56	33.25	5.19	8.65	
5	Mask-DeFRCN [†] [28]	27.82	42.12	32.54	48.03	13.69	24.41	23.03	39.37	26.84	45.04	11.60	22.36	
	Ours	30.48	47.75	35.30	53.65	16.02	30.05	25.20	44.12	29.10	49.87	13.50	26.86	
	iMTFA 10	19.26	27.49	23.36	32.41	6.97	12.72	17.87	26.46	21.87	32.01	5.88	9.81	
10	Mask-DeFRCN [†] [28]	29.88	45.25	34.17	50.48	17.02	29.58	24.75	42.32	28.23	47.33	14.32	27.29	
	Ours	31.77	49.77	36.14	54.85	18.67	34.55	26.36	46.13	29.91	51.11	15.71	31.19	
30	Mask-DeFRCN [†] [28]	31.66	48.11	35.10	52.01	21.33	36.44	26.23	44.97	29.12	48.82	17.57	33.42	
50	Ours	32.92	51.37	36.45	55.05	22.30	40.31	27.31	47.61	30.32	51.41	18.29	36.22	

Our method **outperforms** the SOAT on MS-COCO in either *FSIS* or *gFSIS* setting.

Experiments

Ablation study

				Comp	lexity		Dete	ction		Segmentation				
Shots	M-Rate	DC	PCB	#Params.	GFLOPs	Ba	ise	Novel		Base		No	vel	
						AP	AP50	AP	AP50	AP	AP50	AP	AP50	
		X	X	54.9M	334.54	30.09	44.45	3.89	7.43	24.62	41.58	3.52	6.88	
1	92.201	1	×	54.9M	334.54	34.35	52.46	5.04	10.03	28.03	48.60	4.59	9.12	
1 8	05.5%	X	1	99.4M	377.88	30.11	44.42	4.95	9.55	24.63	41.57	4.45	8.81	
		1	1	99.4M	377.88	34.35	52.46	6.34	12.79	28.03	48.60	5.72	11.53	
		X	X	54.9M	334.54	32.54	48.03	11.94	21.16	26.84	45.04	10.10	19.37	
5	PO 201	1	×	54.9M	334.54	35.30	53.65	14.01	26.17	29.10	49.87	11.80	23.38	
5	80.3%	X	1	99.4M	377.88	32.54	48.03	13.69	24.41	26.84	45.04	11.60	22.36	
		1	1	99.4M	377.88	35.30	53.65	16.02	30.05	29.10	49.87	13.50	26.86	
		X	X	54.9M	334.54	34.05	50.21	14.96	25.70	28.12	47.10	12.60	23.81	
10	76 70	1	×	54.9M	334.54	36.13	54.81	16.66	30.79	29.90	51.07	13.98	27.72	
10	10.1%	X	1	99.4M	377.88	34.17	50.48	17.02	29.58	28.23	47.33	14.32	27.29	
0		1	1	99.4M	377.88	36.14	54.85	18.67	34.55	29.91	51.11	15.71	31.19	

Table 7: The effects of DC and PCB for FSIS performance on MS-COCO.

Effectiveness:

The decoupling classifier is effective not only on novel classes but also on base classes;

Efficiency:

The decoupling classifier is more efficient because of no additional parameters or computation cost.

Discussion

Why does the DC work well?

Gradient optimization:

Positive head: the gradient is updated in each dimension of the class space.

Negative head: the gradient is limited in some special dimension because of the introduced \vec{m} and thus the biased classification may be alleviated.

Discussion

Why does the DC work well?

Generalization ability (Reacll and mRecall):

The mRecall and Recall of our decoupling classifier is significantly higher that of the standard classifier on each shot with two few-shot settings. This means that the decoupling classifier is helpful to mitigate the bias classification thus boosting instance-level few-shot performance.

Discussion

Qualitative Evaluation

The baseline (Mask-DeFRCN) could fail to detect some objects, because it may tend to incorrectly recognize positive objects as background. However, the bias classification is well mitigated using our method, and thus better detection results are obtained.

- We rethink instance-level few-shot methods from the perspective of label completeness and discover that existing few-shot methods severely suffer from bias classification.
- We propose a simple but effective decoupling classifier for mitigating the bias classification in instance-level few-shot settings.
- We achieve state-of-the-art results on two instance-level few-shot tasks without any additional parameters and computation cost.

Thanks !

Decoupling Classifier for Boosting Few-shot Object Detection and Instance Segmentation (NeurIPS 22)