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The above problem is known to be NP-complete to solve (Chickering 1996).
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The above is possible since A, (W) = 0if and only if Wis a DAG.
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Motivated by the nilpotency property of DAGs (i.e., all eigenvalues of W are zero if and only if Wis a
DAG), we propose the following acyclicity characterization:

h (W) =—logdet(s] — Wo W) +dlogs.
To be a proper acyclicity function, we show that s/ — W e W must be an M-matrix, i.e., p(Wo W) < s.

Theorem 1 (Informal). For any s > 0. The following holds:
(i) hy, (W) > 0. Moreover, i, (W) = 0 if and only if Wis a DAG.

(i) VA, (W) = 2(s] — Wo W)~ o W. Moreover, Vh, (W) =_0ifandonly if Wis a DAG.
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Nonlinear SEMs
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e Exploit the Hessian structure of the log-det function for faster second-order methods.
¢ In general, there is a need for rigorous guarantees of these continuous approaches:
¢ |dentifiability

e Statistical/Computational guarantees



