DAGMA: Learning DAGs via M-matrices and a Log-Determinant Acyclicity Characterization

Kevin Bello

Bryon Aragam

Pradeep Ravikumar

(SEM). A Markovian nonparametric SEM consists of a set of equations of the form,

where each $f_i : \mathbb{R}^{d+1} \to \mathbb{R}$ is a nonparametric function, and Z_i represents noise.

• The goal is to learn the underlying directed acyclic graph (DAG) of a structural equation model

$X_i = f_i(X, Z_j), \ \forall j \in [d],$

(SEM). A Markovian nonparametric SEM consists of a set of equations of the form,

where each $f_i : \mathbb{R}^{d+1} \to \mathbb{R}$ is a nonparametric function, and Z_i represents noise.

• E.g., linear SEMs: $X_i = w_i^T X + Z_i$, where $W = [w_1 | \cdots | w_d]$ represents the weighted adjacency matrix.

• The goal is to learn the underlying directed acyclic graph (DAG) of a structural equation model

$X_i = f_i(X, Z_i), \ \forall j \in [d],$

(SEM). A Markovian nonparametric SEM consists of a set of equations of the form,

where each $f_i : \mathbb{R}^{d+1} \to \mathbb{R}$ is a nonparametric function, and Z_i represents noise.

• E.g., linear SEMs: $X_i = w_i^T X + Z_i$, where $W = [w_1 | \cdots | w_d]$ represents the weighted adjacency matrix.

• The goal is to learn the underlying directed acyclic graph (DAG) of a structural equation model

$X_i = f_i(X, Z_i), \ \forall j \in [d],$

(SEM). A Markovian nonparametric SEM consists of a set of equations of the form,

where each $f_i : \mathbb{R}^{d+1} \to \mathbb{R}$ is a nonparametric function, and Z_i represents noise.

• E.g., linear SEMs: $X_i = w_i^T X + Z_i$, where $W = [w_1 | \cdots | w_d]$ represents the weighted adjacency matrix.

• The goal is to learn the underlying directed acyclic graph (DAG) of a structural equation model

- $X_i = f_i(X, Z_i), \ \forall j \in [d],$

(SEM). A Markovian nonparametric SEM consists of a set of equations of the form,

where each $f_i : \mathbb{R}^{d+1} \to \mathbb{R}$ is a nonparametric function, and Z_i represents noise.

• E.g., linear SEMs: $X_i = w_i^T X + Z_i$, where $W = [w_1 | \cdots | w_d]$ represents the weighted adjacency matrix.

• The goal is to learn the underlying **directed acyclic graph (DAG)** of a structural equation model

- $X_i = f_i(X, Z_i), \ \forall j \in [d],$

(SEM). A Markovian nonparametric SEM consists of a set of equations of the form,

where each $f_i : \mathbb{R}^{d+1} \to \mathbb{R}$ is a nonparametric function, and Z_i represents noise.

• E.g., linear SEMs: $X_i = w_i^T X + Z_i$, where $W = [w_1 | \cdots | w_d]$ represents the weighted adjacency matrix.

• The goal is to learn the underlying **directed acyclic graph (DAG)** of a structural equation model

- $X_i = f_i(X, Z_i), \ \forall j \in [d],$

A score-based method searches for the (weighted) adjacency matrix W that minimizes a given score Qthat measures how well W fits the observed data \mathbf{X} . That is, we aim to solve

A score-based method searches for the (weighted) adjacency matrix W that minimizes a given score Qthat measures how well W fits the observed data \mathbf{X} . That is, we aim to solve

W

 $\min Q(W; \mathbf{X})$ s.t. $W \in \text{DAGs}$.

A score-based method searches for the (weighted) adjacency matrix W that minimizes a given score Qthat measures how well W fits the observed data X. That is, we aim to solve

W

The above problem is known to be NP-complete to solve (Chickering 1996).

 $\min Q(W; \mathbf{X})$ s.t. $W \in \text{DAGs}$.

Recent work by Zheng et al. (2018) has replaced the combinatorial DAG constraint to a continuous constraint via the smooth function $h_{\text{expm}}(W) = \text{Tr}(e^{W \circ W}) - d$. That is,

constraint via the smooth function $h_{expm}(W) = Tr(e^{W \circ W}) - d$. That is,

Recent work by Zheng et al. (2018) has replaced the combinatorial DAG constraint to a continuous

$\min_{W} Q(W; \mathbf{X}) \quad \text{s.t. } h_{\text{expm}}(W) = 0.$

Recent work by Zheng et al. (2018) has replaced the combinatorial DAG constraint to a continuous constraint via the smooth function $h_{expm}(W) = Tr(e^{W \circ W}) - d$. That is,

 $\min_{W} Q(W; \mathbf{X}$

The above is possible since $h_{expm}(W) = 0$ if and only if W is a DAG.

(X) s.t.
$$h_{\text{expm}}(W) = 0$$
.

Motivated by the nilpotency property of DAGs (i.e., all eigenvalues of W are zero if and only if W is a DAG), we propose the following acyclicity characterization:

DAG), we propose the following acyclicity characterization:

- Motivated by the nilpotency property of DAGs (i.e., all eigenvalues of W are zero if and only if W is a
 - $h_{\text{ldet}}^s(W) = -\log \det(sI W \circ W) + d\log s.$

DAG), we propose the following acyclicity characterization:

- Motivated by the nilpotency property of DAGs (i.e., all eigenvalues of W are zero if and only if W is a
 - $h_{\text{ldet}}^s(W) = -\log \det(sI W \circ W) + d\log s \,.$
- To be a proper acyclicity function, we show that $sI W \circ W$ must be an M-matrix, i.e., $\rho(W \circ W) < s$.

DAG), we propose the following acyclicity characterization:

Theorem 1 (Informal). For any s > 0. The following holds: (i) $h_{\text{ldef}}^s(W) \ge 0$. Moreover, $h_{\text{ldef}}^s(W) = 0$ if and only if W is a DAG. (ii) $\nabla h_{\text{ldef}}^s(W) = 2(sI - W \circ W)^{-\top} \circ W$. Moreover, $\nabla h_{\text{ldef}}^s(W) = 0$ if and only if W is a DAG.

- Motivated by the nilpotency property of DAGs (i.e., all eigenvalues of W are zero if and only if W is a
 - $h_{\text{ldet}}^s(W) = -\log \det(sI W \circ W) + d\log s.$
- To be a proper acyclicity function, we show that $sI W \circ W$ must be an M-matrix, i.e., $\rho(W \circ W) < s$.

• Its negative gradient points towards the interior of the set of M-matrices.

- Its negative gradient points towards the interior of the set of M-matrices.
- Has a simpler and tractable closed form expression of its Hessian.

- Its negative gradient points towards the interior of the set of M-matrices.
- Has a simpler and tractable closed form expression of its Hessian.
- Acts as a regularizer: shrinks the values of parameters that are part of a cycle. (all)

- Its negative gradient points towards the interior of the set of M-matrices.
- Has a simpler and tractable closed form expression of its Hessian.
- Acts as a regularizer: shrinks the values of parameters that are part of a cycle. (all)
- It is an invex function, i.e., all its stationary points are global minima (DAGs). (all)

- Its negative gradient points towards the interior of the set of M-matrices.
- Has a simpler and tractable closed form expression of its Hessian.
- Acts as a regularizer: shrinks the values of parameters that are part of a cycle. (all)
- It is an invex function, i.e., all its stationary points are global minima (DAGs). (all)

$$W = \begin{bmatrix} 0 & w_1 \\ w_2 & 0 \end{bmatrix}$$

- Its negative gradient points towards the interior of the set of M-matrices.
- Has a simpler and tractable closed form expression of its Hessian.
- Acts as a regularizer: shrinks the values of parameters that are part of a cycle. (all)
- It is an invex function, i.e., all its stationary points are global minima (DAGs). (all)

- Has better behaved gradients.

- Has better behaved gradients.
- Computing h_{ldet}^s is empirically faster than h_{expm} and h_{poly} .

- Has better behaved gradients.
- Computing h_{ldet}^s is empirically faster than h_{expm} and h_{poly} .

- Has better behaved gradients.
- Computing h_{ldet}^s is empirically faster than h_{expm} and h_{poly} .

- Has better behaved gradients.
- Computing h_{ldet}^s is empirically faster than h_{expm} and h_{poly} .

$W_{\rm true} = \begin{bmatrix} 0 & 1.2 \\ 0 & 0 \end{bmatrix}$

$W_{\text{true}} = \begin{bmatrix} 0 & 1.2 \\ 0 & 0 \end{bmatrix}$

- 11.61668 6.46876 3.60214 2.00585 - 1.11696

0.34635 -0.19287

Empirical improvements Linear SEMs

Empirical improvements Nonlinear SEMs

Future directions

Future directions

• Exploit the Hessian structure of the log-det function for faster second-order methods.

Future directions

- Exploit the Hessian structure of the log-det function for faster second-order methods.
- In general, there is a need for rigorous guarantees of these continuous approaches:
 - Identifiability
 - Statistical/Computational guarantees