DAGMA: Learning DAGs via M-matrices and a LogDeterminant Acyclicity Characterization

Kevin Bello

Bryon Aragam

Pradeep Ravikumar

THE UNIVERSITY OF
CHICAGO

Problem introduction

Problem introduction

- The goal is to learn the underlying directed acyclic graph (DAG) of a structural equation model (SEM). A Markovian nonparametric SEM consists of a set of equations of the form,

$$
X_{j}=f_{j}\left(X, Z_{j}\right), \forall j \in[d]
$$

where each $f_{j}: \mathbb{R}^{d+1} \rightarrow \mathbb{R}$ is a nonparametric function, and Z_{j} represents noise.

Problem introduction

- The goal is to learn the underlying directed acyclic graph (DAG) of a structural equation model (SEM). A Markovian nonparametric SEM consists of a set of equations of the form,

$$
X_{j}=f_{j}\left(X, Z_{j}\right), \forall j \in[d]
$$

where each $f_{j}: \mathbb{R}^{d+1} \rightarrow \mathbb{R}$ is a nonparametric function, and Z_{j} represents noise.

- E.g., linear SEMs: $X_{j}=w_{j}^{\top} X+Z_{j}$, where $W=\left[w_{1}|\cdots| w_{d}\right]$ represents the weighted adjacency matrix.

Problem introduction

- The goal is to learn the underlying directed acyclic graph (DAG) of a structural equation model (SEM). A Markovian nonparametric SEM consists of a set of equations of the form,

$$
X_{j}=f_{j}\left(X, Z_{j}\right), \forall j \in[d]
$$

where each $f_{j}: \mathbb{R}^{d+1} \rightarrow \mathbb{R}$ is a nonparametric function, and Z_{j} represents noise.

- E.g., linear SEMs: $X_{j}=w_{j}^{\top} X+Z_{j}$, where $W=\left[w_{1}|\cdots| w_{d}\right]$ represents the weighted adjacency matrix.

$$
\left.\begin{array}{rrrr}
X_{1} & X_{2} & X_{3} & X_{4} \\
{\left[\begin{array}{c}
1.00 \\
-1.5 \\
-1.14 \\
\vdots
\end{array}\right.} & 0.39 & 0.87 & -1.82 \\
\vdots & \vdots & -0.09 \\
\vdots
\end{array}\right]
$$

Problem introduction

- The goal is to learn the underlying directed acyclic graph (DAG) of a structural equation model (SEM). A Markovian nonparametric SEM consists of a set of equations of the form,

$$
X_{j}=f_{j}\left(X, Z_{j}\right), \forall j \in[d]
$$

where each $f_{j}: \mathbb{R}^{d+1} \rightarrow \mathbb{R}$ is a nonparametric function, and Z_{j} represents noise.

- E.g., linear SEMs: $X_{j}=w_{j}^{\top} X+Z_{j}$, where $W=\left[w_{1}|\cdots| w_{d}\right]$ represents the weighted adjacency matrix.

$$
\begin{array}{rrrr}
X_{1} & X_{2} & X_{3} & X_{4} \\
{\left[\begin{array}{rrrr}
1.00 & -2.14 & 0.87 & -1.82 \\
-1.5 & 0.39 & 0.45 & -0.09 \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right]} & \xrightarrow{\text { estimate }}
\end{array}
$$

Problem introduction

- The goal is to learn the underlying directed acyclic graph (DAG) of a structural equation model (SEM). A Markovian nonparametric SEM consists of a set of equations of the form,

$$
X_{j}=f_{j}\left(X, Z_{j}\right), \forall j \in[d]
$$

where each $f_{j}: \mathbb{R}^{d+1} \rightarrow \mathbb{R}$ is a nonparametric function, and Z_{j} represents noise.

- E.g., linear SEMs: $X_{j}=w_{j}^{\top} X+Z_{j}$, where $W=\left[w_{1}|\cdots| w_{d}\right]$ represents the weighted adjacency matrix.

$$
\left.\begin{array}{rccc}
X_{1} & X_{2} & X_{3} & X_{4} \\
{\left[\begin{array}{c}
1.00 \\
-1.5 \\
-1.14 \\
0
\end{array}\right.} & 0.39 & 0.87 & -1.82 \\
\vdots & \vdots & \vdots
\end{array}\right] \xrightarrow{\text { estimate }}
$$

Problem introduction

- The goal is to learn the underlying directed acyclic graph (DAG) of a structural equation model (SEM). A Markovian nonparametric SEM consists of a set of equations of the form,

$$
X_{j}=f_{j}\left(X, Z_{j}\right), \forall j \in[d]
$$

where each $f_{j}: \mathbb{R}^{d+1} \rightarrow \mathbb{R}$ is a nonparametric function, and Z_{j} represents noise.

- E.g., linear SEMs: $X_{j}=w_{j}^{\top} X+Z_{j}$, where $W=\left[w_{1}|\cdots| w_{d}\right]$ represents the weighted adjacency matrix.

$$
\left.\begin{array}{rrrr}
X_{1} & X_{2} & X_{3} & X_{4} \\
{\left[\begin{array}{c}
1.00 \\
-1.5 \\
-2.14 \\
0
\end{array}\right.} & 0.39 & 0.87 & -1.82 \\
\vdots & \vdots & -0.09 \\
\vdots & \vdots
\end{array}\right] \xrightarrow{\text { estimate }} ?
$$

Score-based approach

Score-based approach

A score-based method searches for the (weighted) adjacency matrix W that minimizes a given score Q that measures how well W fits the observed data \mathbf{X}. That is, we aim to solve

Score-based approach

A score-based method searches for the (weighted) adjacency matrix W that minimizes a given score Q that measures how well W fits the observed data \mathbf{X}. That is, we aim to solve

$$
\min _{W} Q(W ; \mathbf{X}) \quad \text { s.t. } \quad W \in \text { DAGs }
$$

Score-based approach

A score-based method searches for the (weighted) adjacency matrix W that minimizes a given score Q that measures how well W fits the observed data \mathbf{X}. That is, we aim to solve

$$
\min _{W} Q(W ; \mathbf{X}) \quad \text { s.t. } \quad W \in \text { DAGs }
$$

The above problem is known to be NP-complete to solve (Chickering 1996).

A continuous framework

A continuous framework

Recent work by Zheng et al. (2018) has replaced the combinatorial DAG constraint to a continuous constraint via the smooth function $h_{\text {expm }}(W)=\operatorname{Tr}\left(e^{W \circ W}\right)-d$. That is,

A continuous framework

Recent work by Zheng et al. (2018) has replaced the combinatorial DAG constraint to a continuous constraint via the smooth function $h_{\text {expm }}(W)=\operatorname{Tr}\left(e^{W \circ W}\right)-d$. That is,

$$
\min _{W} Q(W ; \mathbf{X}) \quad \text { s.t. } h_{\operatorname{expm}}(W)=0
$$

A continuous framework

Recent work by Zheng et al. (2018) has replaced the combinatorial DAG constraint to a continuous constraint via the smooth function $h_{\text {expm }}(W)=\operatorname{Tr}\left(e^{W \circ W}\right)-d$. That is,

$$
\min _{W} Q(W ; \mathbf{X}) \quad \text { s.t. } h_{\operatorname{expm}}(W)=0
$$

The above is possible since $h_{\operatorname{expm}}(W)=0$ if and only if W is a DAG.

A new acyclicity characterization via log-determinant

A new acyclicity characterization via log-determinant

Motivated by the nilpotency property of DAGs (i.e., all eigenvalues of W are zero if and only if W is a DAG), we propose the following acyclicity characterization:

A new acyclicity characterization via log-determinant

Motivated by the nilpotency property of DAGs (i.e., all eigenvalues of W are zero if and only if W is a DAG), we propose the following acyclicity characterization:

$$
h_{\mathrm{ldet}}^{s}(W)=-\log \operatorname{det}(s I-W \circ W)+d \log s
$$

A new acyclicity characterization via log-determinant

Motivated by the nilpotency property of DAGs (i.e., all eigenvalues of W are zero if and only if W is a DAG), we propose the following acyclicity characterization:

$$
h_{\text {ldet }}^{s}(W)=-\log \operatorname{det}(s I-W \circ W)+d \log s .
$$

To be a proper acyclicity function, we show that $s I-W \circ W$ must be an M-matrix, i.e., $\rho(W \circ W)<s$.

A new acyclicity characterization via log-determinant

Motivated by the nilpotency property of DAGs (i.e., all eigenvalues of W are zero if and only if W is a DAG), we propose the following acyclicity characterization:

$$
h_{\text {ldet }}^{s}(W)=-\log \operatorname{det}(s I-W \circ W)+d \log s .
$$

To be a proper acyclicity function, we show that $s I-W \circ W$ must be an M-matrix, i.e., $\rho(W \circ W)<s$.

Theorem 1 (Informal). For any $s>0$. The following holds:
(i) $h_{\text {ldet }}^{s}(W) \geq 0$. Moreover, $h_{\text {ldet }}^{s}(W)=0$ if and only if W is a DAG.
(ii) $\nabla h_{\text {ldet }}^{s}(W)=2(s I-W \circ W)^{-\top} \circ W$. Moreover, $\nabla h_{\text {ldet }}^{s}(W)=0$ if and only if W is a DAG.

Properties

Properties

- Its negative gradient points towards the interior of the set of M-matrices.

Properties

- Its negative gradient points towards the interior of the set of M-matrices.
- Has a simpler and tractable closed form expression of its Hessian.

Properties

- Its negative gradient points towards the interior of the set of M-matrices.
- Has a simpler and tractable closed form expression of its Hessian.
- Acts as a regularizer: shrinks the values of parameters that are part of a cycle. (all)

Properties

- Its negative gradient points towards the interior of the set of M-matrices.
- Has a simpler and tractable closed form expression of its Hessian.
- Acts as a regularizer: shrinks the values of parameters that are part of a cycle. (all)
- It is an invex function, i.e., all its stationary points are global minima (DAGs). (all)

Properties

- Its negative gradient points towards the interior of the set of M-matrices.
- Has a simpler and tractable closed form expression of its Hessian.
- Acts as a regularizer: shrinks the values of parameters that are part of a cycle. (all)
- It is an invex function, i.e., all its stationary points are global minima (DAGs). (all)

$$
W=\left[\begin{array}{cc}
0 & w_{1} \\
w_{2} & 0
\end{array}\right]
$$

Properties

- Its negative gradient points towards the interior of the set of M-matrices.
- Has a simpler and tractable closed form expression of its Hessian.
- Acts as a regularizer: shrinks the values of parameters that are part of a cycle. (all)
- It is an invex function, i.e., all its stationary points are global minima (DAGs). (all)

$$
W=\left[\begin{array}{cc}
0 & w_{1} \\
w_{2} & 0
\end{array}\right]
$$

(a) $h_{\text {Idet }}^{s=1}(W)$

(b) Contours of $h_{\text {Idet }}^{s=1}(W)$

(c) Vector field of $\nabla h_{\text {ldet }}^{s=1}(W)$

Benefits of using the log-determinant

Benefits of using the log-determinant

- Does not diminish cycles of any length. In contrast, $h_{\text {expm }}$ diminishes a cycle of length k by $1 / k!$.

Benefits of using the log-determinant

- Does not diminish cycles of any length. In contrast, $h_{\text {expm }}$ diminishes a cycle of length k by $1 / k$!.
- Has better behaved gradients.

Benefits of using the log-determinant

- Does not diminish cycles of any length. In contrast, $h_{\text {expm }}$ diminishes a cycle of length k by $1 / k$!.
- Has better behaved gradients.
- Computing $h_{\text {ldet }}^{s}$ is empirically faster than $h_{\text {expm }}$ and $h_{\text {poly }}$.

Benefits of using the log-determinant

- Does not diminish cycles of any length. In contrast, $h_{\text {expm }}$ diminishes a cycle of length k by $1 / k$!.
- Has better behaved gradients.
- Computing $h_{\text {Idet }}^{s}$ is empirically faster than $h_{\text {expm }}$ and $h_{\text {poly }}$.

Benefits of using the log-determinant

- Does not diminish cycles of any length. In contrast, $h_{\text {expm }}$ diminishes a cycle of length k by $1 / k$!.
- Has better behaved gradients.
- Computing $h_{\text {Idet }}^{s}$ is empirically faster than $h_{\text {expm }}$ and $h_{\text {poly }}$.

Benefits of using the log-determinant

- Does not diminish cycles of any length. In contrast, $h_{\text {expm }}$ diminishes a cycle of length k by $1 / k!$.
- Has better behaved gradients.
- Computing $h_{\text {ldet }}^{s}$ is empirically faster than $h_{\text {expm }}$ and $h_{\text {poly }}$.

Optimization

Optimization

$$
W_{\text {true }}=\left[\begin{array}{rr}
0 & 1.2 \\
0 & 0
\end{array}\right]
$$

Optimization

$$
W_{\text {true }}=\left[\begin{array}{rr}
0 & 1.2 \\
0 & 0
\end{array}\right]
$$

$\min _{W}$ [1] $Q(W)+h(W)$

$$
\begin{aligned}
& W_{\text {init }}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
& W_{\text {sol }}=\left[\begin{array}{rr}
0 & 1.06 \\
0.25 & 0
\end{array}\right]
\end{aligned}
$$

Optimization

$$
W_{\text {true }}=\left[\begin{array}{rr}
0 & 1.2 \\
0 & 0
\end{array}\right]
$$

$\min _{W}[1 \cdot Q(W)+h(W)$

$$
\begin{aligned}
& W_{\text {init }}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
& W_{\text {sol }}=\left[\begin{array}{rr}
0 & 1.06 \\
0.25 & 0
\end{array}\right]
\end{aligned}
$$

$\min _{W}^{0.1} \cdot Q(W)+h(W)$

$$
W_{\mathrm{init}}=\left[\begin{array}{rr}
0 & 1.06 \\
0.25 & 0
\end{array}\right]
$$

$$
W_{\text {sol }}=\left[\begin{array}{rr}
0 & 1.16 \\
0.041 & 0
\end{array}\right]
$$

Optimization

$$
W_{\text {true }}=\left[\begin{array}{rr}
0 & 1.2 \\
0 & 0
\end{array}\right]
$$

$\min _{W}[1 \cdot Q(W)+h(W)$

$$
\begin{aligned}
& W_{\text {init }}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
& W_{\text {sol }}=\left[\begin{array}{rr}
0 & 1.06 \\
0.25 & 0
\end{array}\right]
\end{aligned}
$$

$\min _{W} 0.1 \cdot Q(W)+h(W)$

$$
\begin{aligned}
& W_{\text {init }}=\left[\begin{array}{rr}
0 & 1.06 \\
0.25 & 0
\end{array}\right] \\
& W_{\text {sol }}=\left[\begin{array}{rr}
0 & 1.16 \\
0.041 & 0
\end{array}\right]
\end{aligned}
$$

$\min _{W} 0.01 \cdot Q(W)+h(W)$

$$
\begin{aligned}
& W_{\text {init }}=\left[\begin{array}{rr}
0 & 1.16 \\
0.041 & 0
\end{array}\right] \\
& W_{\text {sol }}=\left[\begin{array}{rr}
0 & 1.19 \\
0.0042 & 0
\end{array}\right]
\end{aligned}
$$

Optimization

$$
W_{\text {true }}=\left[\begin{array}{rr}
0 & 1.2 \\
0 & 0
\end{array}\right]
$$

$\min _{W}[1 \cdot Q(W)+h(W)$

$$
\begin{aligned}
& W_{\text {init }}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
& W_{\text {sol }}=\left[\begin{array}{rr}
0 & 1.06 \\
0.25 & 0
\end{array}\right]
\end{aligned}
$$

$\min _{W} 0.1 \cdot Q(W)+h(W)$

$$
\begin{aligned}
& W_{\text {init }}=\left[\begin{array}{rr}
0 & 1.06 \\
0.25 & 0
\end{array}\right] \\
& W_{\text {sol }}=\left[\begin{array}{rr}
0 & 1.16 \\
0.041 & 0
\end{array}\right]
\end{aligned}
$$

$\min _{W} 0.01 \cdot Q(W)+h(W)$

$$
\begin{aligned}
& W_{\mathrm{init}}=\left[\begin{array}{rr}
0 & 1.16 \\
0.041 & 0
\end{array}\right] \\
& W_{\mathrm{sol}}=\left[\begin{array}{rr}
0 & 1.19 \\
0.0042 & 0
\end{array}\right]
\end{aligned}
$$

$\min _{W} 0.001 \cdot Q(W)+h(W)$

$$
\begin{aligned}
& W_{\text {init }}=\left[\begin{array}{rr}
0 & 1.19 \\
0.0042 & 0
\end{array}\right] \\
& W_{\text {init }}=\left[\begin{array}{rr}
0 & 1.19 \\
0.00042 & 0
\end{array}\right]
\end{aligned}
$$

Empirical improvements

Linear SEMs

Empirical improvements

Nonlinear SEMs

Future directions

Future directions

- Exploit the Hessian structure of the log-det function for faster second-order methods.

Future directions

- Exploit the Hessian structure of the log-det function for faster second-order methods.
- In general, there is a need for rigorous guarantees of these continuous approaches:
- Identifiability
- Statistical/Computational guarantees

