
DAGMA:	Learning	DAGs	via	M-matrices	and	a	Log-
Determinant	Acyclicity	Characterization

Pradeep RavikumarKevin Bello Bryon Aragam



Problem	introduction



Problem	introduction

• The	goal	is	to	learn	the	underlying	directed	acyclic	graph	(DAG)	of	a	structural	equation	model	
(SEM).	A	Markovian	nonparametric	SEM	consists	of	a	set	of	equations	of	the	form,		
	
																																																																									 	
	
where	each	 	is	a	nonparametric	function,	and	 	represents	noise.

Xj = fj(X, Zj), ∀j ∈ [d],

fj : ℝd+1 → ℝ Zj



Problem	introduction

• The	goal	is	to	learn	the	underlying	directed	acyclic	graph	(DAG)	of	a	structural	equation	model	
(SEM).	A	Markovian	nonparametric	SEM	consists	of	a	set	of	equations	of	the	form,		
	
																																																																									 	
	
where	each	 	is	a	nonparametric	function,	and	 	represents	noise.

Xj = fj(X, Zj), ∀j ∈ [d],

fj : ℝd+1 → ℝ Zj

• E.g.,	linear	SEMs:	 ,	where	 	represents	the	weighted	adjacency	
matrix.

Xj = w⊤
j X + Zj W = [w1 ∣ ⋯ ∣ wd]



Problem	introduction

• The	goal	is	to	learn	the	underlying	directed	acyclic	graph	(DAG)	of	a	structural	equation	model	
(SEM).	A	Markovian	nonparametric	SEM	consists	of	a	set	of	equations	of	the	form,		
	
																																																																									 	
	
where	each	 	is	a	nonparametric	function,	and	 	represents	noise.

Xj = fj(X, Zj), ∀j ∈ [d],

fj : ℝd+1 → ℝ Zj

• E.g.,	linear	SEMs:	 ,	where	 	represents	the	weighted	adjacency	
matrix.

Xj = w⊤
j X + Zj W = [w1 ∣ ⋯ ∣ wd]

1.00 −2.14 0.87 −1.82
−1.5 0.39 0.45 −0.09

⋮ ⋮ ⋮ ⋮

X1 X2 X3 X4



Problem	introduction

• The	goal	is	to	learn	the	underlying	directed	acyclic	graph	(DAG)	of	a	structural	equation	model	
(SEM).	A	Markovian	nonparametric	SEM	consists	of	a	set	of	equations	of	the	form,		
	
																																																																									 	
	
where	each	 	is	a	nonparametric	function,	and	 	represents	noise.

Xj = fj(X, Zj), ∀j ∈ [d],

fj : ℝd+1 → ℝ Zj

• E.g.,	linear	SEMs:	 ,	where	 	represents	the	weighted	adjacency	
matrix.

Xj = w⊤
j X + Zj W = [w1 ∣ ⋯ ∣ wd]

estimate1.00 −2.14 0.87 −1.82
−1.5 0.39 0.45 −0.09

⋮ ⋮ ⋮ ⋮

X1 X2 X3 X4



Problem	introduction

• The	goal	is	to	learn	the	underlying	directed	acyclic	graph	(DAG)	of	a	structural	equation	model	
(SEM).	A	Markovian	nonparametric	SEM	consists	of	a	set	of	equations	of	the	form,		
	
																																																																									 	
	
where	each	 	is	a	nonparametric	function,	and	 	represents	noise.

Xj = fj(X, Zj), ∀j ∈ [d],

fj : ℝd+1 → ℝ Zj

• E.g.,	linear	SEMs:	 ,	where	 	represents	the	weighted	adjacency	
matrix.

Xj = w⊤
j X + Zj W = [w1 ∣ ⋯ ∣ wd]

estimate1.00 −2.14 0.87 −1.82
−1.5 0.39 0.45 −0.09

⋮ ⋮ ⋮ ⋮

X1 X2 X3 X4
X1

X4
X3

X2

?



Problem	introduction

• The	goal	is	to	learn	the	underlying	directed	acyclic	graph	(DAG)	of	a	structural	equation	model	
(SEM).	A	Markovian	nonparametric	SEM	consists	of	a	set	of	equations	of	the	form,		
	
																																																																									 	
	
where	each	 	is	a	nonparametric	function,	and	 	represents	noise.

Xj = fj(X, Zj), ∀j ∈ [d],

fj : ℝd+1 → ℝ Zj

• E.g.,	linear	SEMs:	 ,	where	 	represents	the	weighted	adjacency	
matrix.

Xj = w⊤
j X + Zj W = [w1 ∣ ⋯ ∣ wd]

estimate1.00 −2.14 0.87 −1.82
−1.5 0.39 0.45 −0.09

⋮ ⋮ ⋮ ⋮

X1 X2 X3 X4
X1

X4
X3

X2

?
X1

X4
X3

X2

?



Score-based	approach



Score-based	approach

A	score-based	method	searches	for	the	(weighted)	adjacency	matrix	 	that	minimizes	a	given	score	 	
that	measures	how	well	 	fits	the	observed	data	 .	That	is,	we	aim	to	solve	
	

W Q
W X



Score-based	approach

A	score-based	method	searches	for	the	(weighted)	adjacency	matrix	 	that	minimizes	a	given	score	 	
that	measures	how	well	 	fits	the	observed	data	 .	That	is,	we	aim	to	solve	
	

W Q
W X

min
W

Q(W; X) s.t. W ∈ DAGs .



Score-based	approach

A	score-based	method	searches	for	the	(weighted)	adjacency	matrix	 	that	minimizes	a	given	score	 	
that	measures	how	well	 	fits	the	observed	data	 .	That	is,	we	aim	to	solve	
	

W Q
W X

The	above	problem	is	known	to	be	NP-complete	to	solve	(Chickering	1996).

min
W

Q(W; X) s.t. W ∈ DAGs .



A	continuous	framework



A	continuous	framework

Recent	work		by	Zheng	et	al.		(2018)	has	replaced	the	combinatorial	DAG	constraint	to	a	continuous	
constraint	via	the	smooth	function	 .	That	is,hexpm(W) = Tr(eW∘W) − d



A	continuous	framework

Recent	work		by	Zheng	et	al.		(2018)	has	replaced	the	combinatorial	DAG	constraint	to	a	continuous	
constraint	via	the	smooth	function	 .	That	is,hexpm(W) = Tr(eW∘W) − d

min
W

Q(W; X) s.t. hexpm(W) = 0.



A	continuous	framework

Recent	work		by	Zheng	et	al.		(2018)	has	replaced	the	combinatorial	DAG	constraint	to	a	continuous	
constraint	via	the	smooth	function	 .	That	is,hexpm(W) = Tr(eW∘W) − d

min
W

Q(W; X) s.t. hexpm(W) = 0.

The	above	is	possible	since	 	if	and	only	if	 	is	a	DAG.hexpm(W) = 0 W
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To	be	a	proper	acyclicity	function,	we	show	that	 	must	be	an	M-matrix,	i.e.,	 .sI − W ∘ W ρ(W ∘ W) < s
hs

ldet(W) = − log det(sI − W ∘ W) + d log s .

Theorem	1	(Informal).	For	any	 .	The	following	holds:	

(i) .	Moreover,	 	if	and	only	if	 	is	a	DAG.	

(ii) .	Moreover,	 	if	and	only	if	 	is	a	DAG.

s > 0

hs
ldet(W) ≥ 0 hs

ldet(W) = 0 W

∇hs
ldet(W) = 2(sI − W ∘ W)−⊤ ∘ W ∇hs

ldet(W) = 0 W
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• Exploit	the	Hessian	structure	of	the	log-det	function	for	faster	second-order	methods.

• In	general,	there	is	a	need	for	rigorous	guarantees	of	these	continuous	approaches:	

• Identifiability	

• Statistical/Computational	guarantees


