

EcoFormer: Energy-Saving Attention with Linear Complexity

Jing Liu*, Zizheng Pan*, Haoyu He, Jianfei Cai, Bohan Zhuang[†]

Department of Data Science & AI, Monash University, Australia

bohan.zhuang@monash.edu

Background: Transformers

Natural Language Processing

Computer Vision

Transformers treat input as a sequence of patches and processes with a Transformer encoder.

Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. ICLR 2021.

Background: Transformers

The efficiency bottlenecks greatly hamper the massive deployment to resource-constrained edge devices.

Yuan et al. Tokens-to-token vit: Training vision transformers from scratch on imagenet. CVPR 2021.

Background: Binary Quantization

	0.7					0,		
	Operation	16-bit FP Add		16-bit FP Mult	32-bit FP Add		32-bit FP Mult	
•	Energy (pJ) 0.4 Area (μm^2) 1,360		1.1	0.9		3.7		
			360	1,640	4,184		7,700	
	_			Network Variations	Operations used in Convolution	Memory Saving (Inference)	Computation Saving (Inference)	Accuracy on ImageNet (AlexNet)
		Input	Standard Convolution	Real-Value Inputs 0.11 -0.210.34 ·· -0.25 0.61 0.52 ··	+ , - , ×	1x	1x	%56.7
	Wei	/eight w	Binary Weight	Binary Weights 0.11 -0.210.34 1 -1 1 -0.25 0.61 0.52 -1 1 1	+,-	~32x	~2x	%56.8
		c W _{in}	BinaryWeight Binary Input (XNOR-Net)	Binary Inputs 1 -11 -1 1 1 Binary Weights 1 -1 1	XNOR , bitcount	~32x	~58x	%44.2

Table. Energy cost for different operations (on 45nm CMOS technology.

Binarize weights enable to replace the multiply-accumulate operations with energy-efficient accumulations.

(a) Rastegari et al. XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks. ECCV 2016.

- (b) Han et al. EIE: Efficient Inference Engine on Compressed Deep Neural Network. ISCA 2016.
- (c) Mark Horowitz. 1.1 computing's energy problem (and what we can do about it). ISSCC 2014.
- (d) Lian et al. High-performance FPGA-based CNN accelerator with block-floating-point arithmetic. VLSI 2019.

Background: Limitation of Binary Quantization

Limitation: Binary quantization can not well preserve the similarity relations among tokens in attention. **Solution:** Learn kernelized hashing to map the queries and keys into low-dimensional binary codes while preserving the similarity relations in Hamming space.

Liu et al. Supervised hashing with kernels. CVPR 2012.

EcoFormer

- \Box Utilize kernel-based linear attention reduces the time complexity from $\mathcal{O}(N^2)$ to $\mathcal{O}(N)$.
- □ Use self-supervised kernelized hashing to map the queries and keys to compact binary codes.
- □ Replace most of the energy-hungry floating-point multiplications with energy-efficient additions.

EcoFormer

Hash function:
$$h(\mathbf{Q}) = \operatorname{sign}\left(\sum_{j=1}^{m} \left(\kappa\left(\mathbf{q}_{(j)}, \mathbf{Q}\right) - \mu_{j}\right) a_{j}\right) = \operatorname{sign}\left(\mathbf{g}(\mathbf{Q})\mathbf{a}\right)$$

 $H(\mathbf{Q}) = \left[h_{1}(\mathbf{Q}), \cdots, h_{b}(\mathbf{Q})\right] = \left[\begin{array}{c}h_{1}(\mathbf{q}_{1}), \cdots, h_{b}(\mathbf{q}_{1})\\ \cdots\\h_{1}(\mathbf{q}_{N}), \cdots, h_{b}(\mathbf{q}_{N})\end{array}\right] = \operatorname{sign}\left(\mathbf{g}(\mathbf{Q})\mathbf{A}\right)$

Objective for hash function learning:

$$\min_{\mathbf{A}} \left\| H(\mathbf{Q}) H(\mathbf{Q})^{\top} - b\mathbf{Y} \right\|_{F}^{2} = \min_{\mathbf{A}} \left\| \sum_{r=1}^{b} h_{r}(\mathbf{Q}) h_{r}(\mathbf{Q})^{\top} - b\mathbf{Y} \right\|_{F}^{2}$$

where $\mathbf{Y}_{ij} = \begin{cases} 1, & (\mathbf{q}_i, \mathbf{q}_j) \in S & \text{Similar pairs of tokens} \\ -1, & (\mathbf{q}_i, \mathbf{q}_j) \in U & \text{Dissimilar pairs of tokens} \\ 0, & \text{otherwise.} \end{cases}$

Results on ImageNet-1k Table. Main results on ImageNet-1K.

Model	Method	#Mul. (B)	#Add. (B)	Energy (B pJ)	Throughput (images/s)	Top-1 Acc. (%)
$\mathbf{D}\mathbf{V}\mathbf{T}_{\mathbf{v}}2 \mathbf{B}0$ [62]	MSA	2.02	1.99	9.25	850	70.77
	Ours	0.54	0.56	2.49	1379	70.44
$\mathbf{D}\mathbf{V}\mathbf{T}_{\mathbf{v}}2 \mathbf{P}1$	MSA	5.02	5.00	23.07	621	78.83
r v 1v2-D1	Ours	2.03	2.09	9.39	874	78.38
$\mathbf{D}\mathbf{V}\mathbf{T}_{\mathbf{v}}2 \mathbf{B}2$	MSA	8.64	8.60	39.71	404	81.82
	Ours	3.85	3.97	17.82	483	81.28
DVTv2 B3	MSA	11.86	11.82	54.56	310	82.26
1 V 1 V 2-DJ	Ours	6.54	6.72	30.25	325	81.96
	MSA	15.97	15.93	73.43	247	82.42
I V I V2-D4	Ours	9.57	9.82	44.25	249	81.90
Twine SVT S [10]	MSA	5.96	5.91	27.36	426	81.66
1 w 1112-2 v 1-2 [10]	Ours	2.72	2.81	12.59	576	80.22

Our EcoFormer achieves lower computational complexity, less energy consumption and higher throughput with comparable performance.

Results on LRA

Method	#Mul. (B)	#Add. (B)	Energy (B pJ)	Text (4K)	Retrieval (4K)	Average
Transformer	4.63	4.57	21.25	64.87	79.62	72.25
Performer [9]	0.83	0.84	3.83	64.82	79.08	71.95
Linformer [60]	0.81	0.81	3.74	57.03	78.11	67.57
Reformer [29]	0.54	0.54	2.49	65.19	79.46	72.33
Combiner* [50]	0.51	0.51	2.34	64.36	56.10	60.23
EcoFormer	0.25	0.29	1.17	64.79	78.67	71.73

Table. Comparisons of different methods on Long Range Arena (LRA).

□ Our EcoFormer saves around 94.6% multiplications, 93.7% additions and 94.5% on-chip energy

consumption compared with standard multi-head self-attention.

- (a) Choromanski et al. Rethinking attention with performers. ICLR 2021.
- (b) Wang et al. Linformer: Self-attention with linear complexity. ArXiv 2020.
- (c) Kitaev et al. Reformer: The efficient transformer. ICLR 2020.
- (d) Ren et al. Combiner: Full attention transformer with sparse computation cost.. NeurIPS 2021.

Quantization vs. hashing

Model	Method	#Mul. (B)	#Add. (B)	Energy (B pJ)	Top-1 Acc. (%)
	FP-EcoFormer	0.94	0.94	4.33	70.78
PVTv2-B0	Bi-EcoFormer	0.63	0.83	3.09	70.06
	EcoFormer	0.54	0.56	2.49	71.23
	FP-EcoFormer	5.96	5.91	27.36	80.04
Twins-SVT-S	Bi-EcoFormer	3.01	3.59	14.38	80.04
	EcoFormer	2.72	2.81	12.58	80.31

Table. Performance comparisons with different binarization methods on CIFAR-100.

Our EcoFormer with lower energy cost consistently outperforms Bi-EcoFormer on different frameworks.
 Our proposed self-supervised hash functions preserve the pairwise similarity of attention.

Hubara et al. Quantized neural networks: Training neural networks with low precision weights and activations. JMLR 2017.

Thanks for Watching

Please refer to our paper and code for more details

