"Lossless" Compression of Deep Neural Networks: A High-dimensional Neural Tangent Kernel Approach

Lingyu Gu^{*1} Yongqi Du^{*1} Yuan Zhang² Di Xie² Shiliang Pu² Robert C. Qiu¹ Zhenyu Liao^{†1}

¹EIC, Huazhong University of Science and Technology, Wuhan, China

²Hikvision Research Institute, Hangzhou, China

NeurIPS, 2022

*Equal contribution,[†]Corresponding author. Gu L, Du Y, Liao Z NTK-LC 1/10

Motivation Method Result

Motivation: Model Compression and Its Difficulties

- Deep Neural Network (DNN)
 - powerful framework
 - massive storage and computing consumption
 - over-parameterized
- Model Compression
 - compress DNN, maintain performance
 - pruning, quantization, knowledge distillation ...

Difficulties

- Iimited theoretical understanding of DNN
- unclear the trade-off between performance and complexity

< ∃ > 3

Motivation Method Result

Motivation: Model Compression and Its Difficulties

- Deep Neural Network (DNN)
 - powerful framework
 - massive storage and computing consumption
 - over-parameterized
- Model Compression
 - compress DNN, maintain performance
 - pruning, quantization, knowledge distillation ...

Difficulties

- Iimited theoretical understanding of DNN
- unclear the trade-off between performance and complexity

Understanding DNN model first!

Gu L, Du Y, Liao Z NTK-LC

A ∃ ► ∃ = < < < </p>

Motivation Method Result

Neural Tangent Kernel

- Neural Tangent Kernel (NTK) [JGH18]
 - the NTK matrix $\mathbf{K}_{NTK} = \mathbf{J}^{\top} \mathbf{J} = (\nabla_{\theta} f_{\theta}(X))^{\top} (\nabla_{\theta} f_{\theta}(X))$
 - only depends on input data, network structure, and (law of) random initialization
 - characterizes convergence and generalization properties of network (via its eigenspectrum)

▲ ■ ▶ ■ ■ ■ ● ● ● ●

Motivation Method Result

How Can NTK Help Compression?

 For high-dimensional Gaussian mixture data (number n and dimension p) and fully-connected multi-layer neural nets

Asymptotic spectral equivalence between $\mathbf{K}_{\rm NTK}$ and $\mathbf{\widetilde{K}}_{\rm NTK}$

 \blacksquare For the NTK matrix $\mathbf{K}_{\mathrm{NTK},\ell}$ of layer $\ell,$ as $n,p\to\infty,$ one has that

$$\left\| \mathbf{K}_{\mathrm{NTK},\ell} - \tilde{\mathbf{K}}_{\mathrm{NTK},\ell} \right\| \to 0,$$

- $\tilde{\mathbf{K}}_{\mathrm{NTK},\ell}$ with explicit expression.
- Proof via an induction on the layer $\ell = 0, 1, \dots, L$.

Motivation Method Result

How Can NTK Help Compression?

Explicit expression of $\tilde{\mathbf{K}}_{\mathrm{NTK},\ell}$

$$\tilde{\mathbf{K}}_{\mathrm{NTK},\ell} \equiv \beta_{\ell,1} \mathbf{X}^{\top} \mathbf{X} + \mathbf{V} \mathbf{B}_{\ell} \mathbf{V}^{\top} + \left(\kappa_{\ell}^2 - \tau_0^2 \beta_{\ell,1} - \tau_0^4 \beta_{\ell,3}\right) \mathbf{I}_n$$

with $\mathbf{V} \in \mathbb{R}^{n \times (K+1)}, \mathbf{t} \in \mathbb{R}^{K}, \mathbf{T} \in \mathbb{R}^{K \times K}, \tau_0$ some statistics for input data, and

$$\mathbf{B}_{\ell} \equiv \begin{bmatrix} \beta_{\ell,2} \mathbf{t} \mathbf{t}^\top + \beta_{\ell,3} \mathbf{T} & \beta_{\ell,2} \mathbf{t} \\ \beta_{\ell,2} \mathbf{t}^\top & \beta_{\ell,2} \end{bmatrix} \in \mathbb{R}^{(K+1) \times (K+1)}$$

- depends on activations with only four parameters $\beta_{\ell,1}$, $\beta_{\ell,2}$, $\beta_{\ell,3}$, κ_{ℓ}
- independent of the distribution of weights (satisfying zero mean and unit variance)

◎ ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ ヨ ● の Q @

Motivatior Method Result

How to Compress Weights and Activation Functions?

• Sparsity and Ternary Weights W with sparsity rate $\varepsilon \in [0,1)$

$$[W]_{ij} = \begin{cases} 0 & p = \varepsilon \\ (1 - \varepsilon)^{-1/2} & p = 1/2 - \varepsilon/2 \\ -(1 - \varepsilon)^{-1/2} & p = 1/2 - \varepsilon/2 \end{cases}$$

Quantized Activations

Figure: Visual representations of activations σ_T and σ_Q .

6/10

Motivation Method Result

Numerical Experiments

Figure: Classification accuracies of different compressed fully-connected nets on MNIST (top) and CIFAR10 (bottom) datasets. Blue curves represent the proposed compression approach with different levels of sparsity $\varepsilon \in \{0\%, 50\%, 90\%\}$, purple curves represent the heuristic sparsification approach by uniformly zeroing out 80% of the weights, green curves represent the heuristic quantization approach using the binary activation $\sigma(t) = 1_{t < -1} + 1_{t > 1}$, red curves represent the original network, brown curves represent the proposed compression approach without activation quantization, with $\varepsilon = 90\%$ for MNIST (top) and $\varepsilon = 95\%$ for CIFAR10 (bottom), and orange curves represent magnitude-based pruning with the same sparsity level ε as brown. Memory varies due to the change of layer width of the network.

Gu L, Du Y, Liao Z NTK-LC

7/10

(《圖》 《문》 《문》 문남

Conclusion and Outlook

Conclusion

- Theoretical Result: precise characterizations of the eigenspectra of NTK matrix
- Compression Algorithm: sparsify and quantize fully-connected deep nets

Outlook

- apply asymptotic characterizations for NTK for some analysis for dynamics of fully-connected DNN models
- extend to more involved settings, like convolutional nets

Appendix References

Reference I

[JGH18] Arthur Jacot, Franck Gabriel, and Clément Hongler. "Neural tangent kernel: Convergence and generalization in neural networks". In: Advances in neural information processing systems 31 (2018).

< ∃ > ∃

= 200

Thank You!

And welcome to come to talk with us at (virtual) poster session for more details!

3. 3