GAMA: Generative Adversarial Multi-Object Scene Attacks

<u>Abhishek Aich</u>¹, Calvin-Khang Ta¹, Akash Gupta, Chengyu Song, Srikanth V. Krishnamurthy, M. Salman Asif, Amit K. Roy-Chowdhury

¹joint first authors

Adversarial Attacks

Bad actors/attackers are always looking to break systems
self-driving cars, face-identification systems, etc.

Adversarial Attacks

♦ Attackers are evolving ··· and so are their attacking tools!
→ Past ~5 years, focus on generative adversarial attacks
→ Generative Attacks use surrogate models^[1,2,3,4]

^[1] Omid Poursaeed et al. "Generative Adversarial Perturbations". CVPR. 2018.

- [3] Mathieu Salzmann et al. "Learning Transferable Adversarial Perturbations". NeurIPS (2021).
- [4] Qilong Zhang et al. "Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains". ICLR. 2022.

^[2] Muzammal Naseer et al. "Cross-Domain Transferability of Adversarial Perturbations". NeurIPS (2019).

Adversarial Attacks

♦ Generative attacks are characterized by

- \rightsquigarrow High transferability of perturbations
- \rightsquigarrow Perturb large number of images with one forward pass

Problem Statement

Prior works only focused on perturbing scenes with one object
e.g. datasets like ImageNet, CIFAR100

But natural/real-world scenes contain multiple objects
e.g. datasets like Pascal-VOC, MS-COCO

single-object scenes

multi-object scenes

Problem Statement

Design a generative attack for multi-object scenes which crafts imperceptible perturbations to fool multi-label classifiers

Vision-Language models for Attacks (!)

- ◆ "Contrastive Language–Image Pre-training" framework or CLIP^[5]
 - \rightsquigarrow pre-trained on ${\sim}400$ million images, open-sourced
 - \rightsquigarrow provides generalized image features
 - \rightsquigarrow (most importantly), allows language-image alignment property

^[5] Alec Radford et al. "Learning transferable visual models from natural language supervision". ICML. 2021.

Vision-Language models for Attacks (!)

- ◆ CLIP can be "exploited" by the attacker
- Natural scenes have co-occurring objects
- These contextual relationships can be easily encoded in language
 - \rightsquigarrow e.g. "person" and "horse" \rightarrow "a photo depicts person and horse"

Vision-Language models for Attacks (!)

Attack scenarios

- $\blacklozenge~f(\cdot)$ is the surrogate model trained on distribution $\mathcal D$
- \blacklozenge $g(\cdot)$ is the victim model trained on distribution \mathcal{D}_t
 - \rightsquigarrow Scenario 1: an attack termed white-box if $f(\cdot) = g(\cdot)$ and $\mathcal{D} = \mathcal{D}_t$
 - \rightsquigarrow Scenario 2: an attack termed black-box if either $f(\cdot) \neq g(\cdot)$ or $\mathcal{D} \neq \mathcal{D}_t$

Same-Distribution Attack Results

• GAMA creates strong perturbations under both white-box and black-box attacks

Table 1: Pascal-VOC \rightarrow Pascal-VOC (white-box attacks)

$oldsymbol{f}(\cdot)$	Method	VGG16	VGG19	Res50	Res152	Den169	Den121	Average
	No Attack	82.51	83.18	80.52	83.12	83.74	83.07	82.69
VGG19	GAP [<mark>1</mark>]	19.64	16.60	72.95	76.24	68.79	66.50	53.45
	CDA [<mark>2</mark>]	26.16	20.52	61.40	65.67	70.33	62.67	51.12
	TAP [<mark>3</mark>]	24.77	19.26	66.95	66.95	68.65	64.51	51.84
	BIA [4]	12.53	14.00	64.24	69.07	69.44	64.71	48.99
	GAMA	6.11	5.89	41.17	45.57	53.11	44.58	32.73
Res152	GAP [<mark>1</mark>]	56.93	56.20	65.58	72.26	75.22	69.54	65.95
	CDA [<mark>2</mark>]	41.07	47.60	53.84	47.22	67.50	59.65	52.81
	TAP [<mark>3</mark>]	52.92	58.24	56.52	53.61	71.55	64.56	59.56
	BIA [4]	45.34	49.74	51.98	50.27	67.75	61.05	54.35
	GAMA	33.42	39.42	32.39	20.46	49.76	49.54	37.49

(hamming scores in %, lower is better)

Different-Distribution Attack Results

♦ GAMA shows strong transferability of perturbations for stricter black-box attacks

f ()	Method	VGG16	VGG19	Res50	Res152	Den121	Den169	Average
J (·)	No Attack	70.15	70.94	74.60	77.34	74.22	75.74	73.83
VGG19	GAP [<mark>1</mark>]	24.44	21.64	63.65	67.84	63.09	65.47	51.02
	CDA [<mark>2</mark>]	13.83	11.99	47.32	53.92	46.81	52.24	37.68
	TAP [<mark>3</mark>]	06.70	07.28	50.94	57.36	47.68	53.43	37.23
	BIA [<mark>4</mark>]	04.20	04.73	48.63	57.65	45.94	53.37	35.75
	GAMA	03.07	03.41	22.32	34.04	24.51	30.35	19.61
Res152	GAP [<mark>1</mark>]	34.04	34.67	52.85	61.61	58.09	59.24	50.08
	CDA [<mark>2</mark>]	29.33	34.88	44.28	46.05	46.91	51.62	42.17
	TAP [<mark>3</mark>]	33.25	37.53	41.18	42.14	50.96	56.45	43.58
	BIA [4]	22.82	27.44	34.66	36.74	45.48	51.26	36.40
	GAMA	16.43	17.02	21.93	17.07	31.63	30.57	22.44

Table 2: Pascal-VOC \rightarrow ImageNet

(hamming scores in %, lower is better)

Classifier-to-Detector Attack Results

♦ GAMA crafts better perturbations even for extreme black-box attacks

Table 3: Pascal-VOC \rightarrow MS-COCO Object Detection task

f (.)	Method	FRCN	RNet	DETR	$D^2 ETR$	Average
J (.)	No Attack	0.582	0.554	0.607	0.633	0.594
	GAP [<mark>1</mark>]	0.424	0.404	0.360	0.410	0.399
VGG19	CDA [2]	0.276	0.250	0.208	0.244	0.244
	TAP [<mark>3</mark>]	0.384	0.340	0.275	0.320	0.329
	BIA [4]	0.347	0.318	0.253	0.281	0.299
	GAMA	0.234	0.207	0.117	0.122	0.170
	GAP [<mark>1</mark>]	0.389	0.362	0.363	0.408	0.380
52	CDA [2]	0.305	0.274	0.256	0.281	0.279
ss1	TAP [<mark>3</mark>]	0.400	0.348	0.288	0.350	0.346
R	BIA [4]	0.321	0.275	0.205	0.256	0.264
	GAMA	0.172	0.138	0.080	0.095	0.121

(bbox_mAP_50 values, lower is better)

Adversarial examples

top row: clean images, bottom row: perturbed images, text on each image: victim classifier predictions

Thank You!

- ► Acknowledgement → This work was supported by the Defense Advanced Research Projects Agency (DARPA) under Agreement No. HR00112090096.
- **Paper ID: 130** \rightarrow GAMA: Generative Adversarial Multi-Object Scene Attacks

(Project page)