

RecursiveMix: Mixed Learning with History

Lingfeng Yang^{1#}, Xiang Li^{2#}, Borui Zhao³, Renjie Song³, and Jian Yang^{1*} ¹Nanjing University of Science and Technology, ²Nankai University, ³Megvii Technology

{yanglfnjust, csjyang}@njust.edu.cn, xiang.li.implus@nankai.edu.cn zhaoborui.gm@gmail.com, songrenjie@megvii.com

* Corresponding author. # Equal contributions. Research was done during Lingfeng's internship at Megvii

Background

Mixup, ICLR 2018

CutMix, ICCV 2019

FMIX, Arxiv 2020

Mixed Sample Data Augmentation

$$x_{mix} = mix_{\lambda}(x_1, x_2)$$

 $y_{mix} = mix_{\lambda}(y_1, y_2)$

Puzzle Mix, ICML 2020

StyleMix, CVPR 2021

Background

Input

No historical knowledge

Iter 5 Iter 2 Iter 4 Iter 3 prediction consistency

Ours

Utilize historical knowledge

Method

Existing Works (Mixup, CutMix...)

Ours

MEGVII町视 Method One-hot Label γ^{t-1} One-hot Label y^t One-hot Label y^{t+1} One-hot Label v^{t+2} Supervise 🗆 Dog Bird Cat Horse ResizeFill $1 - \lambda^t$ $1 - \lambda^{t+2}$ $1 - \lambda^{t+1}$ λ^{t+1} λ^{t+2} λ^t **Historical Label** П KL divergence KL divergence KL divergence **Historical Prediction** ן ב י \mathcal{H}' \mathcal{H} \mathcal{H}' ${\mathcal H}$ \mathcal{H}' ${\mathcal H}$ ${\mathcal H}$ RoIAlign GAP GAP RoIAlign GAP GAP RoIAlign Model Model Model Model **Historical Input** λ^{t+2} λ^t λ^{t+1} Iteration t-1 Iteration t Iteration *t*+1 Iteration *t*+2

prediction consistency

Method

Resize and paste

 $\lambda = \text{Uniform}(0, \boldsymbol{\alpha})$ $H_t = \sqrt{\lambda} \cdot H_{t-1}$

Figure: Ablation study on α .

Criterion

$$\mathcal{L} = \mathcal{L}_{CE}(\widetilde{x}^t, \widetilde{y}^t) + \boldsymbol{\omega} \lambda^t \mathcal{L}_{KL}(\widetilde{p}_{roi}^t, p^h)$$

Analysis

Figure: "Cut" may lead to inconsistency while "Resize" concretely preserve the consistency.

Figure: 1) Richer supervisions. 2) Multi-scale/-space views.3) Explicit learning on the spatial semantic consistency.

Analysis

Existing Contrastive Learning Methods

Additional computation cost

Mean teachers, NeurIPS 2017

Consume large memory

Temporal Ensemble, ICLR 2017

Ours

The additional computation/memory cost is negligible

ResNet-50 (300 epochs)	Memory	Flops	#P (deploy)	Top-1 Err (%)
Baseline	5.74 G	4.12 G	25.56 M	23.68
+ Mixup	5.74 G	4.12 G	25.56 M	22.58
+ CutMix	5.74 G	4.12 G	25.56 M	21.40
+ RM (ours)	5.74 G	4.12 G	25.56 M	20.80

Ablation Study

Classification

Model	RS	HS	CL	Top-1 Err (%)
PyramidNet	_	_	_	16.67
+CutMix ^[1]				15.59
	\checkmark			15.36
+RM (ours)	\checkmark	\checkmark		14.81
	\checkmark	\checkmark	\checkmark	14.65

Table: "RS": Resize strategy. "HS": Historical mix. "CL": Consistency loss.

Downstream

Detector	CL	AP AP ₅₀		AP ₇₅
		41.1	59.4	44.5
A122 [-]	\checkmark	41.5	59.9	45.1
		41.4	59.4	44.9
	✓	41.9	60.2	45.6

Table: Object detection

Segmentor	CL	mloU	mAcc	aAcc
PSPNet ^[4]		41.09	51.72	79.99
	\checkmark	41.73	52.47	80.01
UperNet ^[5]		41.88	52.79	79.94
	\checkmark	42.30	52.61	80.14

Table: Semantic segmentation

[1] Cutmix: Regularization strategy to train strong classifiers with localizable features. Yun S et al. ICCV 2019

[2] Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection, Zhang S et al. CVPR 2020

[3] Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection, Li X et al. NeurIPS 2020

[4] Pyramid scene parsing network, Zhao H et al. CVPR 2017

[5] Unified perceptual parsing for scene understanding, Xiao T et al. ECCV 2018.

Results

CIFAR10

PyramidNet-200 (300 epochs)	Top-1 Err (%)
Baseline	3.85
+ Label Smoothing	3.74
+ DropBlock	3.27
+ Stochastic Depth	3.11
+ Cutout	3.10
+ Mixup (α=1.0)	3.09
+ Manifold Mixup (α=1.0)	3.15
+ CutMix	2.88
+ MoEx	3.44
+ StyleCutMix (auto-γ)	2.55
+ RM (ours)	2.35

CIFAR100

Model (200 epochs)	Туре	Top-1 Err (%)
	Baseline	21.70
	+ Mixup	20.99
Resinet-18	+ CutMix	19.61
	+ RM (ours)	18.64
	Baseline	20.62
DecNet 24	+ Mixup	19.19
Resinel-34	+ CutMix	17.89
	+ RM (ours)	17.15
	Baseline	19.51
Dependent 121	+ Mixup	17.71
DenseNet-121	+ CutMix	17.21
	+ RM (ours)	16.22
	Baseline	18.78
Dependent 161	+ Mixup	16.84
Denselvet-101	+ CutMix	16.64
	+ RM (ours)	15.54
PyramidNet-164	Baseline	16.67
	+ Mixup	16.02
	+ CutMix	15.59
	+ RM (ours)	14.65

ImageNet

ResNet-50 (300 epochs)	Top-1 Err (%)	Top-5 Err (%)
Baseline	23.68	7.05
+ Cutout	22.93	6.66
+ Stochastic Depth	22.46	6.27
+ Mixup	22.58	6.40
+ Manifold Mixup	22.50	6.21
+ DropBlock	21.87	5.98
+ Feature CutMix	21.80	6.06
+ CutMix	21.40	5.92
+ PuzzleMix	21.24	5.71
+ MoEx	21.90	6.10
+ CutMix + MoEx	20.90	5.70
+ RM (ours)	20.80	5.42

Results

Object detection

Detector	Pretrain Backbone	AP	AP ₅₀	AP ₇₅
	ResNet-50	39.4	57.6	42.8
	+ CutMix	40.1	58.4	43.4
ATOO	+ RM (ours)	41.5	59.9	45.1
A133	PVTv2-B1	39.3	57.2	42.5
	+ CutMix	41.8	60.3	45.5
	+ RM (ours)	42.3	61.0	45.6
GFL	ResNet-50	40.2	58.4	43.3
	+ CutMix	41.3	59.5	44.6
	+ RM (ours)	41.9	60.2	45.6
	PVTv2-B1	40.2	58.1	43.2
	+ CutMix	42.1	60.7	45.5
	+ RM (ours)	43.0	61.6	46.5

Semantic segmentation

Segmentor	Pretrain Backbone	mloU	mAcc	aAcc
	ResNet-50	40.90	51.11	79.52
	+ CutMix	40.96	51.16	79.93
DODNot	+ RM (ours)	41.73	52.47	80.01
FSFNel	PVTv2-B1	36.48	46.26	76.79
	+ CutMix	37.99	48.70	77.50
	+ RM (ours)	38.67	49.40	77.93
UperNet	ResNet-50	40.40	51.00	79.54
	+ CutMix	41.24	51.79	79.69
	+ RM (ours)	42.30	52.61	80.14
	PVTv2-B1	39.94	50.75	79.02
	+ CutMix	41.73	52.99	80.02
	+ RM (ours)	43.26	54.21	80.36

Results

Figure: CAM visualization on natural samples with multiple labels.

- We propose recursive mix (RM) data augmentation, which constructs training pairs with identical inputs to learn spatial semantic consistency using historical prediction knowledge.
- RM shows better performance on image classification as well as various downstream tasks.

Thank you!

Codes and pretrained models are available at <u>https://github.com/implus/RecursiveMix</u>