SGAM: Building a Virtual 3D World through Simultaneous Generation and Mapping

Yuan Shen, Wei-Chiu Ma, Shenlong Wang

Massachusetts Institute of Technology

Goal

Goal

Input: a RGB-D image

Goal

Input: a RGB-D image

Output: a consistent, realistic and large-scale 3D world.

Applications for 3D Generation

Gaming

Simulation

Filmmaking

Metaverse

Urban Planning

Robot Navigation

Desiderata

• Scalability

• Realism

• Consistency

Source: Google Earth

3D Object Generation

Chan et al. pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis, CVPR 2021 Gao et al. GET3D: A Generative Model of High Quality 3D Textured Shapes Learned from Images, NeurIPS 2022

3D World Generation

Perpetual Video Generation

Liu* and Tucker* et al., ICCV 2021. Rombach* and Esser* et al, ICCV 2021.

For each step:

Efros and Freeman, SIGGRAPH 2001.

For each step:

• Grow the target image by selecting a new patch to fill

- Grow the target image by selecting a new patch to fill
- Sample a patch that is *consistent* with the current target image and is *realistic*

- Grow the target image by selecting a new patch location to fill
- Sample a patch that is *consistent* with the current target image and is *realistic*
- Add to the new image

- Grow the target image by selecting a new patch to fill
- Sample a patch that is *consistent* with the current target image and is *realistic*
- Add to the new image

"2D world"

"Ortho camera at position (u, v)"

Efros and Freeman, SIGGRAPH 2001.

For each step:

 Grow the target scene by selecting a view of interest

- Grow the target scene by selecting a view of interest
- Sample a new image that is *consistent* with the current 3D scene and is *realistic*

- Grow the target scene by selecting a view of interest
- Sample a new image that is *consistent* with the current 3D scene and is *realistic*
- Integrate it with the scene

For each step:

- Grow the target scene by selecting a view of interest
- Sample a new image that is *consistent* with the current 3D scene and is *realistic*
- Integrate it with the scene

Generative Sensing

Generative Sensing

Target pose $\boldsymbol{\xi}_t$

Mapping

Current map $|\mathcal{M}_{t-1}|$

Generated sensory input \mathbf{X}_t

 $p(\mathcal{M}_t | \mathcal{M}_{t-1}, \mathbf{x}_t, \boldsymbol{\xi}_t)$

Volumetric fusion

Update map \mathcal{M}_t

Dataset

- CLEVR-Infinite: posed RGB-D synthetic data
- Google Earth: posed RGB-D real-world data

InfiniteNature

mode-collapse

InfiniteNature

mode-collapse

slow and early decoding issues

mode-collapse

slow and early decoding issues

slow and inconsistent

mode-collapse

slow and early decoding issues

slow and inconsistent

fast and highquality

Effect of different camera trajectories

Scene-level Results on CLEVR-Infinite

1. Robin Rombach & Patrick Esser, et al., "Geometry-Free View Synthesis: Transformers and no 3D Priors", ICCV 2021

Scene-level Results on CLEVR-Infinite

renderer	FID↓	JSD (10-2)↓	MMD (10⁻₅)↓
GFVS-implicit	16.14	0.775	4.510
GFVS-explicit	82.82	10.870	211.500
ours	26.60	0.656	4.441

Comparison on Google Earth

InfiniteNature

GFVS-Explicit

GFVS-Implicit

Ours

Liu* and Tucker* et al, ICCV 2021. Rombach* and Esser* et al, ICCV 2021.

More Qualitative Results on Google Earth

Qualitative Results on Google Earth

Scene-Level Results on Google Earth

renderer	FID↓	
InfiniteNature	182.6	
GFVS-implicit	160.40	
GFVS-explicit	113.12	
ours	79.26	

1. Andrew Liu & Richard Tucker, et al., *"Infinite Nature: Perceptual View Generation of Natural Scenes from a Single Image"*, ICCV 2021 2. Robin Rombach & Patrick Esser, et al., "Geometry-Free View Synthesis: Transformers and no 3D Priors", ICCV 2021

Conclusion

- We present SGAM a 3D scene generation framework that produces realistic, consistent and large-scale 3D virtual world through simultaneous generation and mapping
- Take-home message: explicit 3D mapping helps consistency, realism and scalability for perpetual generation.

Thanks for watching, please check our paper for details!

Project Page: https://yshen47.github.io/sgam/

Codebase link: https://github.com/yshen47/SGAM

Paper link: <u>https://openreview.net/forum?id=17KCLTbRymw</u>

