METS-CoV: A Dataset of Medical Entity and Targeted Sentiment on COVID-19 Related Tweets

Peilin Zhou, Zeqiang Wang, Dading Chong, Zhijiang Guo, Yining Hua, Zichang Su, Zhiyang Teng, Jiageng Wu, Jie Yang
Zhejiang University, Peking University, University of Cambridge, Harvard Medical School, and Westlake University

Introduction Model Benchmarking

M' . . . . . . . We evaluated the performance of (a) statistical machine learning models, (b) neural networks, (c) general domain large-scale pre-trained language models (PLM), and (d) COVID-19-related PLM for
* There s a large body of social media-based public health studies, especially during the pandemic the NER task and the TSA task on METS-CoV. In addition, we selected the best model from each group for in-depth analysis and discussion.
when clinical and survey studies are difficult to conduct.
« Existing natural language processing (NLP) tools struggle to fulfill the surging demand for accurate Named Entity Recognition (NER)
social media-based public healthcare analysis due to the lack of relevant datasets.
N . X ¥ R Table 3: Model performance on METS-CoV-NER dataset. (* means uncased model)
+ Named entity recognition (NER) and targeted sentiment analysis (TSA) are two important tasks for
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+ We released METS-CoV (Medical Entities and Targeted Sentiments on CoVid-19-related tweets), a
i Observations:
dataset annotated with: . . . o . .
. 10,000 tweets = Overall performance (Table 3): COVID-TWITTER-BERT is a strong baseline on the NER subset, but F1 values of Disease and Organization entities are suboptimal.
et . . : . : i N 3 i i <
« 7 types of entities: Disease, Drug, Symptom, Vaccine, Person, Location, and Organization. " Etf_gct_o_f_tm_l_e!]gms_(ﬁgure 3): All models’ performance c.le.creases as tv.veet lengths |ncrea.se. The performance is generally bt?tter when tweet lengths < 40 tokens.
« sentiments of 4 types of entities: Person, Organization, Drug, and Vaccine. = In-depth study (Figure 4): COVID-TWITTER-BERT extracts entities correctly in most cases. But it tends to confuse Symptom and Disease.
* We designed detailed guidelines for annotating medical entities (Disease, Drug, Symptom, Vaccine, . .
on tweei e ( » Urug, symptom, ) Targeted Sentiment Analysis (TSA)
+ We benchmarked the performance of classical machine learning models and state-of-the-art dee reon
learning models includ?ng pre-training language models on NERgand TSA tasks of METS-CoV. P Table 4: Model performance on METS-CoV-TSA dataset. ' 1 "~
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using 3 sentiment labels: positive, negative, and neutral. Observations:
Data Statistics: r E = Overall performance (Table 4): Pre-trained models on COVID-19 tweets, such as COVID-TWITTERBERT, has better performance on TSA subset.
Figure 2, Table1 and 2. Read the paper for more: = |mpact of tweet lengths (Figure 5): For ?VM and TNET, their F1 values gradually decrease as tweet lengths increase. But for depGCN (CQVID—MIWER-BERT), its F1 value remains stable when
Paper the tweet length < 50. The performance increases to 0.8 when the tweet length = 60, and decreases to about 0.6 when the length further increases to > 60.
= In-depth study (Figure 6): the current best TSA model has moderate performance. More robust models are needed to accurately distinguish sentiment polarities.
Table I: Statistics of METS-CoV-NER dataset. Table 2: Statistics of METS-CoV-TSA dataset.
. Number Dev Test Number Train | Dev | Test
H Tweets 1,500 | 1,500 POS 260 64 58 .
L Tokens 59% | 60k Person NEU | 1293 | 256 | 240 ‘A’
i;: X All Entities 2,749 | 2,738 NEG 700 152 | 189 conc' USIO n s & FUtu re
"; Person 472 487 POS 126 24 31
- Location 294 | 279 Organization | NEU | 1346 _| 284 | 251
Organization 396 | 381 NEG] 462 | 88 | 99 Public health researchers can use METS-CoV to mine valuable medical information from tweets. For example, The dataset can be used as a training dataset for examining public
sease 301 25! 234 85 64 . . . . . ” .
p " . E'ﬂ;' < ,ﬁl ,,’7‘ Drug 70147 ,’42 attitudes toward COVID-19 vaccines and drugs, tracking the public’s mental status change during different COVID-19 phases, etc. Our experiments also show that current models
Tweets Length Symptom 806 | 869 13 730 |21 have not fully exploited the dataset’s potential. We call for more efforts on developing models for social media-based public health studies.
Figure 2: The distribution of tweets length o Vaccine 218 | 237 s | 112 | B ] 20 L . - y
= METS-CoV. ¢ Vaccine z:k I’: ‘:l" "’:‘ For ethics discussions, code, data, and guidelines, please refer to our paper and GitHub page.




