

A Unified Evaluation of Textual Backdoor Learning: Frameworks and Benchmarks

Ganqu Cui, Lifan Yuan, Bingxiang He, Yangyi Chen, Zhiyuan Liu, Maosong Sun

THUNLP

What is Textual Backdoor Attack?

Figure 1: An illustration of backdoor attacks. Here "cf" is the trigger and "Negative" is the target label.

- Functions normally given benign inputs
- Produces certain outputs specified by the attacker when predefined triggers are activated

Pipeline for Downstream Tasks using PTM

Pipeline for Downstream Tasks using PTM

Pipeline for Downstream Tasks using PTM

Attacker

Table 1: Summarization of the releases, accessibility, and attackers in different attack scenarios.

Scenario	Release	A	Accessibility	Attacker	
		Training	Task Data	Model	
Ι	Datasets		\checkmark		[15, 10, 37, 36]
Π	Pre-trained models	\checkmark		\checkmark	[64, 46, 55]
III	Fine-tuned models	\checkmark	\checkmark	\checkmark	[20, 57, 59, 63, 22, 38]

Defender

Table 10: Defense methods in OpenBackdoor.

Defender	Goal	Acc	essibility	Stage	Scenario
		Clean Data	Poisoned Model		
BKI [6]	Detection		\checkmark	Training	I
ONION [35]	Correction	\checkmark		Inference	I, II, III
STRIP [14]	Detection	\checkmark	\checkmark	Inference	I, II, III
RAP [58]	Detection	\checkmark	\checkmark	Inference	I, II, III
CUBE	Detection		\checkmark	Training	I

Previous Protocols:

• Measuring Attack Success Rate (ASR) & Clean Accuracy (CACC) for **all** attackers & defenders.

Deficiencies:

- 1). The evaluation protocols are not specialized for different scenarios.
- 2). The evaluation metrics are incomplete.

Metrics for Poisoned Samples

• Effectiveness: Performance on poisoned and benign samples.

 \rightarrow Metric: ASR, CACC.

• **Stealthiness:** Ability to avoid automatic or human detection.

 \rightarrow Metric: Average Perplexity Increase (ΔPPL), Average Grammar Error Increase (ΔGE).

• Validity: Semantic similarity between poisoned and original samples.

 \rightarrow Metric: Universal Sentence Encoder Score (USE)

Scenario-specified Evaluation Methodologies

- **Dataset Param:** the attackers need to control poison rate and label consistency.
- Transferability: testing attack performances on multiple tasks.
- **Clean-tuning:** fine-tune the victim models on clean datasets.

	Sce.I	Sce.II	Sce.III
Dataset Param. Transferability Clean-tuning	√	\checkmark	\checkmark

- Comprehensive evaluations.
- Modularized framework.

Figure 4: Architecture of OpenBackdoor.

Intuition

Figure 3: Visualization of the last hidden states of BadNet backdoor training.

Results

Table 7: Evaluation results for training-time defense. "Oracle" stands for removing all poisoned samples and remaining all normal samples. **Bold**: Lowest ASR and highest CACC.

Dataset	Attacker	None	Badnet		AddSent		SynBkd		StyleBkd	
		CA	ASR	CA	ASR	CA	ASR	CA	ASR	CA
SST-2	w/o Defense	91.10	100.0	91.21	100.0	91.16	86.08	90.77	77.30	90.34
	ONION	91.71	29.93	88.14	49.78	91.10	89.25	89.35	83.37	85.06
	BKI	91.16	15.79	89.79	33.55	90.72	88.49	89.13	81.58	89.46
	STRIP	87.75	99.78	90.23	28.62	91.39	88.71	90.44	83.48	86.99
	RAP	91.93	90.79	86.71	27.19	91.71	93.42	86.49	84.82	87.15
	CUBE	90.66	15.90	90.17	24.01	90.28	45.61	91.32	22.43	91.27
	Oracle	-	12.28	90.83	15.35	90.33	32.46	90.61	29.02	89.68
	w/o Defense	96.02	99.84	95.72	100.0	95.25	98.23	95.49	70.39	94.49
	ONION	94.97	43.40	94.41	100.0	95.21	97.10	94.81	66.86	93.84
	BKI	95.49	100.0	96.02	100.0	95.57	98.15	95.25	71.13	94.16
HSOL	STRIP	95.69	99.92	95.73	100.0	95.49	99.28	94.73	72.78	93.56
	RAP	95.98	99.84	95.53	100.0	50.02	99.11	94.57	68.59	94.45
	CUBE	95.53	100.0	95.13	4.99	94.89	10.47	94.77	5.92	95.25
	Oracle	-	7.81	94.25	7.97	94.41	7.717	93.80	3.78	95.09
AG's News	w/o Defense	94.24	100.0	94.62	100.0	94.51	98.05	90.63	82.22	90.17
	ONION	93.92	98.91	93.21	100.0	94.03	93.37	90.11	80.12	89.49
	BKI	94.26	93.67	94.42	100.0	94.33	97.00	90.97	80.90	90.33
	STRIP	94.42	99.93	93.93	100.0	94.55	99.16	89.97	81.64	91.03
	RAP	25.11	100.0	94.07	100.0	94.51	99.19	91.03	76.51	90.59
	CUBE	93.92	0.72	94.12	0.58	94.55	5.72	87.59	4.71	87.38
	Oracle	-	0.89	94.24	0.54	94.21	4.96	91.17	5.01	91.08

Thank You for your Attention! Toolkit: <u>https://github.com/thunlp/OpenBackdoor</u> Paper: <u>https://arxiv.org/abs/2206.08514</u>

