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Part 1

Basics in Foundation Model and Robustness



What is Foundation Model?
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“We introduce the term foundation models to fill a void in describing the paradigm shift we are
witnessing... Existing terms (e.g., pretrained model, self-supervised model) partially capture
the technical dimension of these models, but fail to capture the significance of the paradigm
shift in an accessible manner for those beyond machine learning.

“We also chose the term “foundation" to connote the significance of architectural stability,
safety, and security ... At present, we emphasize that we do not fully understand the nature or
quality of the foundation that foundation models provide; we cannot characterize whether the
foundation is trustworthy or not.”



| propose that we adopt the term "Large Self-
Supervised Models (LSSMs)" as a replacement for
"Foundation Models" and "LLMs". "LLMs" don't
capture non-linguistic data and "Foundation
Models" is too grandiose. Thoughts? @percyliang

Replying to @tdietterich

The beauty of language is that you can have multiple terms that
highlight different aspects of the same object. You don't have to
choose. | use "LLM" to talk about LLMs, "self-supervised" for
their construction, and "foundation model” for their function. No
term can be replaced.

O 1 0 2 Q 33 '

Thomas G. Dietterich @tdietterich - Aug 13
Yes, but as you know, "Foundation™ is too close to

"Foundational”, and many of us find that troubling. That is why
I'm proposing a more neutral term. For use, maybe we could just
call them "Upstream models".

Q s 1 2 Q s5 &

ﬁ Percy Liang @percyliang - Aug 13

Show replies

Yann LeCun @ylecun - Aug 13
Though the "large" thing is not going to age well, unless "large
means "larger than what a normal academic lab can train”

O 7 0 O 39 w

Markus Wulfmeier @markus with k- Aug 17
Is early work in deep learning still ‘deep'? There's a good
argument to be made that the terminology still applies.

(Not that | haven't had papers partially rejected because the
deep network didn't have enough layers to be called deep Q)

Hilde Kuehne @HildeKuehne - 22h
Replying to @tdietterich and @percyliang

| would vote for calling it pretrained backbones (PB) as we always

did. If you want to make it large, call it LPB... just a reasonable
description of reality with a bit less magic and glitter



Our take on Foundation Model:
A machine learning paradigm featuring task-agnostic
pre-training and task-specific fine-tuning via neural networks

e Task-agnostic pre-training (with unlabeled/noisy data)
o  Self-supervised learning of data representations
m  Supervision-free pre-training
e Data scalability (Texts, Images, Speech, etc)
m  Use of auxiliary tasks
e Masked prediction (of tokens)
e  Contrastive learning
o  Generic representation learning of a data modality (aka a data encoder)
e Task-specific fine-tuning (with labeled data)
o Linear probing (training a linear head on representations)
o  Full fine-tuning (training both the linear head and the encoder)
e Examples:

o Large language models such as GPT-3 and BLOOM
o  Transformer-based neural networks for different data modalities

*We do not exclude the use of supervised pre-training for foundation models



Examples of Task-agnostic Pre-training

Masked prediction

output logits vocab_size

el A =
o880 0008 0088 eeee DRe®

Feed-forward NN
—1]———]———~J———|

BERT

o [CLS] 1 after 2 abraham 3 [MASK] -- sn [PAD]

Tokenizer

after abraham lincoln won the november...

James Briggs. Masked-Language Modeling
With BERT. TowardsDataScience, 2021

Contrastive learning

Anchor Negatives Anchor Negatives
7o v ) —

Positive ] Positives

e

Self Supervised Contrastive Supervised Contrastive

Khosla et al. Supervised Contrastive Learning. NeurlPS 2020 9


https://towardsdatascience.com/masked-language-modelling-with-bert-7d49793e5d2c
https://towardsdatascience.com/masked-language-modelling-with-bert-7d49793e5d2c
https://arxiv.org/abs/2004.11362

Data & Model Scalability with Self-Supervised Learning

Self-supervised Pretraining of Visual Features in the Wild

Priya Goyal'! Mathilde Caron'?> Benjamin Lefaudeux! Min Xu! Pengchao Wang! Vivek Pai'
Mannat Singh!  Vitaliy Liptchinsky! Ishan Misra'! Armand Joulin' Piotr Bojanowski'

! Facebook AI Research 2 Inria*
Code: https: Yol
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“Our final SEIf-supERVvised (SEER) model, a RegNetY
SEER with 1.3B parameters trained on 1B random images
SwAV with 512 GPUs achieves 84.2% top-1 accuracy,
SimCLRv2 surpassing the best self-supervised pretrained model
ViT by 1% and confirming that self-supervised learning
works in a real world setting.”
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Neural Scaling Laws

Loss vs Model and Dataset Size

108 109
Tokens in Dataset

Transformers asymptotically outperform LSTMs
due to improved use of long contexts

Test Loss 5.4

4.8

4.2

3.6

/4 2 Layers
4 Layers

Transformers

105 108 107
Parameters (non-embedding)

Kaplan et al. Scaling Laws for Neural Language Models. Arxiv 2020
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https://arxiv.org/abs/2001.08361

What is Foundational Robustness?




== Stable Diffusion Demo

Stable Diffusion is a state of the art text-to-image model that generates images from text.

For faster generation and forthcoming API access you can try DreamStudio Beta On the Opportunities and Risks of Foundation-Models

4.8 Robustness to distribution shifts

Authors: Sang Michael Xie, Ananya Kumar, Rohan Taori, Tony Lee, Shiori Sagawa, Pang Wei Koh,
Tatsunori Hashimoto

Robustness of Deep Learning models. Generate image
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https://huggingface.co/spaces/stabilityai/stable-diffusion

Formalizing Robustness of Foundation Models (1)

Linear head for 0={¢,W} |

downstream task

Pre-training on ¢
n Fine-tuning principles:
. Standard linear probing:
Fix ¢, train W
o Full fine-tuning:

network from pretraining Train both ¢ and W

Encoder/Representation

14



ML Predictions Are (Mostly) Accurate but Brittle

“pig” (91%) noise (NOT random) “airliner” (99%)

+ 0.005 x

P Pl ¢ 1042/20002

i J. Z. Kolter and A. Madry: Adversarial Robustness - Theory and Practice (NeurlPS 2018 Tutorial)



How to measure the quality of
representations from foundation models?



Benchmarking Representation Robustness and Beyond (1)

Diverse test sets USing real “We devise 10 types of tasks over 40 datasets in

downstream data (task-specific) order to evaluate different aspects of reliability on

both vision and language domains.”
PLEX: Towards Reliability Using

Pretrained Large Model Extensions

I Plex L (ours) : .-\\.'.vuru‘c\' .
5 1 5 s3- 5 . 1 1 MNLI (Subpop shift)
Dustin Tran*', Jeremiah Liu', Michael W. Dusenberry', Du Phan", Bl SOTA (specialized)
Mark Collier!, Jie Ren!, Kehang Han!, Zi Wang!, Zelda Mariet!, Huiyi Hu!, [ Plex B (ours)
Neil Band?, Tim G. J. Rudner?, Karan Singhal!, Zachary Nado!, |
Joost van Amersfoort?, Andreas Kirsch?, Rodolphe Jenatton', Nithum Thain!, ‘NaLUE \ﬁiﬁ\
Honglin Yuan'f, Kelly Buchanan'f, Kevin Murphy!, D. Sculley!, Yarin Gal?, s :

Zoubin Ghahramani', Jasper Snoek!, Balaji Lakshminarayanan'

LGoogle 2 University of Ozford

MoDEL

/l\ ; af ¢ . Accuracy
\ MNLI

AUROC :
WikipediaTalk | (0OOD)
(Subpop shift) \

UNCERTAINTY RoBUST GENERALIZATION ADAPTATION

Calibration In-distribution performance Active learning

Generalization under

Selective prediction : :
P covariate shift

Few-shot learning

Open set recognition lizati d Few-shot uncertainty
Genera 1zat19n under (including zero-shot) AUROC AUROC

Label uncertainty subpopulation shift WikipediaTalk (OOD) WikipediaTalk




Benchmarking Representation Robustness and Beyond (2)

Synthetic data with ideal reference (task-agnostic)

Generate conditional Gaussian Representations

®

@[Syn Bench-Score

' area B
representation areaB " area A + area B
network \ R
threshold accuracy e Soundness

@ t e Task-independence
Syn Bench Flexibility & Privacy

expected bound

Supervised pre-training

Linear heads with different robustness margins
on ImageNet-21K

a; = 0.7 | € =0.2 e€=04 e=06 e=0.8] CIFARI0O CIFARI0-c
ViT-B/16 + ImageNet-1K 0.‘ E 0.32 0.20 0.06 95.0 81.2
ViT-B/16 0.20 0. 23 0.18 0.07 0.01 89.6 71.4

Ching-Yun Ko, Pin-Yu Chen, Jeet Mohapatra, Payel Das, and Luca Daniel. SynBench: Task-Agnostic

Benchmarking of Pretrained Representations using Synthetic Data. arxiv 2022


https://arxiv.org/abs/2210.02989
https://arxiv.org/abs/2210.02989

Other Aspects of Trustworthiness in Foundation Models

(no covered in this tutorial)

Language Models are Few-Shot Learners

Tom B. Brown" Benjamin Mann* Nick Ryder* Melanie Subbiah”
Jared Kaplan' Prafulla Dhariwal Arvind Neelakantan Pranav Shyam Girish Sastry
Amanda Askell Sandhini Agarwal Ariel Herbert-Voss Gretchen Krueger Tom Henighan

Rewon Child Aditya Ramesh

Daniel M. Ziegler Jeffrey Wu Clemens Winter

Christopher Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray
Benjamin Chess Jack Clark Christopher Berner

Sam McCandlish

NeurlPS 2020 OpenAl

Alec Radford Ilya Sutskever Dario Amodei

5 Limitations

6 Broader Impacts

6.1 Misuse of Language Models
6.2 Fairness, Bias, and Representation
6.3 Energy Usage

- 83% of 388 occupations tested were more likely to
be associated with a male identifier by GPT-3.

- “Black” had a consistently low sentiment.

Extracting Training Data from Large Language Models

USENIX 2021
Eric Wallace? Matthew Jagielski*

Adam Roberts'

Nicholas Carlini! Florian Tramer?

Ariel Herbert-Voss>© Tom Brown’
Alina Oprea* Colin Raffel!

'Google 2Stanford 3UC Berkeley *Northeastern University OpenAl SHarvard "Apple

Katherine Lee!
.

Ulfar Erlingsson

Dawn Song?

Figure 1: Our extraction attack. Given query access to a
neural network language model, we extract an individual per-
son’s name, email address, phone number, fax number, and
physical address. The example in this figure shows informa-
tion that is all accurate so we redact it to protect privacy.

Corporation Seabank Centre
Marine Parade Southport
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*Many broader topics were discussed in “On the Opportunities and Risks of Foundation Models”



https://arxiv.org/abs/2108.07258

Part 2

Foundation Models for Computer Vision

20



Robustness Evaluation & Attribution of
Vision Transformers

Sayak Paul* and Pin-Yu Chen*. Vision transformers are robust learners. AAAI 2022
Rulin Shao, Zhouxing Shi, Jinfeng Yi, Pin-Yu Chen, and Cho-Jui Hsieh. On the adversarial

robustness of vision transformers. TMLR 2022
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https://arxiv.org/abs/2105.07581
https://arxiv.org/abs/2103.15670
https://arxiv.org/abs/2103.15670

AN IMAGE IS WORTH 16X16 WORDS:
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Vi S i O n Tra n Sfo rm e rS Alexey Dosovitskiy*', Lucas Beyer®, Alexander Kolesnikov®, Dirk Weissenborn®,

Xiaohua Zhai", Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby*'
*equal technical contribution, 'equal advising
Google Research, Brain Team ICLR 2021
{adosovitskiy

, neilhoulsby}@google.com

Pure Transformer (Vaswani
et al., NeurlPS’17) applied to
patches of images with

Vision Transformer (ViT) minimal changes. o
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Robustness Evaluation

Out-of-distribution Generalization

Dataset Purpose

Common

ImageNet-C (Hendrycks and Dietterich 2019) corruptions

Common
perturbations

ImageNet-P (Hendrycks and Dietterich 2019)

ImageNet-R (Hendrycks et al. 2020) Semantic shifts

Out-of-domain

ImageNet-O (Hendrycks et al. 2021) distribution

Natural adversarial

ImageNet-A (Hendrycks et al. 2021) examples

Background

ImageNet-9 (Xiao et al. 2021) dependence

Robustness to Adversarial Perturbations

e Empirical robustness

o Minimize, _ S loss_,.. . (x+3]0),
where S is a neighborhood of x.

o Example: loss_,_ = negative cross

entropy of f,(x) and y
e Certified robustness
o Find a neighborhood R around x
such that f, (x) = £ (xX’) for any X €R
o Example: randomized smoothing
Jeremy Cohen, Elan Rosenfeld, and Zico

Kolter. Certified adversarial robustness
via randomized smoothing. ICML 2019 23



https://arxiv.org/abs/1902.02918
https://arxiv.org/abs/1902.02918

Intrinsic Robustness in Vision Transformers (ViTs)

. ImageNet-C Accuracy under
—e— Vanilla RN50 VITS/16 a AU tO AttaCk

mm BiT (m) 5:1811:
44.01 ViT-SAM-B/16
42.24 ViT-B/16-Res
aRas T2TViT-14 ViT-S/16
39.92 T2TViT-24 De

vIT

39.52

Robust Accuracy (%)

! & DeiT-S/16 Number of Parameters SRy
Dist-DeiT-B/16
3423 Swin-S/4
SEResNet50 ViT-B/16 Swin-S/4
ResNeXt-32x4d-ssl W
ResNet50-swsl [ \
® ResNet1s MLP~).1|xer~B“‘¢16
ResNet50-32x4d ~—
ShuffleNet
MobileNet
VGG16 S
O MLP-Mixer-B/16 .
@® ConvNeXt-S \,‘ﬂ 2
000 | T : :
" 74 76 78

5 L ' - = g S
r50x1 B-16 r50x3 B-32 rl01x1 L-16 r101x3 L-32 r152x4 N.A Clean Accuracy (%)

Models of different sizes Francesco Croce and Matthias Hein. Reliable evaluation of adversarial
BiT: Big Transfer (CNN); RN: ResNet robustness with an ensemble of diverse parameter-free attacks. ICML 2020 24



https://arxiv.org/abs/2003.01690
https://arxiv.org/abs/2003.01690

More Key Findings ImageNet-9:
detecting vulnerable

image foregrounds

e ViTs outperform others on most but not all
OOD benchmarks [AAAI'22] Model

e Pure ViTs possess better certified robust
accuracy than CNNs [TMLR22]

e Modern CNN design helps bridge the
performance gap between CNNs and ViTs
(e.g., ConvNeXt, MLP-Mixer, SEResNet)
[TMLR’22]

e (Standard) pre-training helps OOD
robustness but not necessarily adversarial

Challenge
Accuracy (%)

BiIT-mr101x3 3.78
ViT L-16 20.02
ResNet-50 22.3

ViT B/16

Pre-training ImageNet-A  ImageNet-R  ImageNet-O

(Top-1 Acc) (Top-1 Acc) (AUPR)

ImageNet-1k  8.630994 28213835 26.25
robustness [AAAI'22, TMLR’22] ImageNet-21k  21.746947  41.815233 54.61
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Robustness Attribution for ViTs

Better use of global context Lower model sensitivity Smoother loss landscape
Factor  Acc (BiT) Acc (ViT) ; : Bllmaiold viT L16
0 79 83 ;
0.05 76 82.3

0.1 75 814
0.2 72.4 77.9 ok
05 52 604 ’ ’ PGD ;ttack stepﬁs

Cross entropy loss

*More results can be found in “Vision Transformers are Robust Learners”

Dong Yin, Raphael Gontijo Lopes, Jon Shlens, Ekin Dogus Cubuk, and Justin Gilmer.
A fourier perspective on model robustness in computer vision. NeurlPS 2019 26



https://arxiv.org/abs/1906.08988
https://arxiv.org/abs/2105.07581

(Adversarial) Robustness Transfer:
From (Self-supervised) Pre-training to
Fine-tuning



Robust Self-supervised Pre-training

e Given a robust pre-trained model, is it possible to transfer robustness to
downstream tasks?

e Self-supervised pre-training: Rotation prediction [Gidaris et al., 2018], Jigsaw

[Noroozi et al., 2017], Selfie [Trinh et al., 2019], SIimCLR [Chen et al., 2020]

Residual Blocks 6, Projection
— = ‘ Encoder s

Mask off Patch  Fillin Patch \

P T C Selfie Classifier
Patc.h Erﬁtaﬂon‘ Selfie { (Patch postion) | | Maximise
. ’ similarit
HE.! Jigsaw idua B )
_— '

OCK | C i !
..i- Rotation . > iy— ér :
EEERN 3 Encoder Projection ﬁ
— : i head
0°, 90 180°,270° : :
(Angles) ;

(SImCLR architecture; image from TDS blog)

[Chen et al., 2020]
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https://arxiv.org/pdf/1803.07728.pdf
https://arxiv.org/pdf/1603.09246.pdf
https://arxiv.org/abs/1906.02940
https://arxiv.org/abs/2002.05709
https://towardsdatascience.com/improving-transformation-invariance-in-contrastive-representation-learning-63f881ea1ac2
https://openaccess.thecvf.com/content_CVPR_2020/papers/Chen_Adversarial_Robustness_From_Self-Supervised_Pre-Training_to_Fine-Tuning_CVPR_2020_paper.pdf

Robust Self-supervised Pre-training

e Challenge: In most of robust self-supervised pre-training mechanisms, robustness is
difficult to transfer to downstream fine-tuning tasks unless robust fine-tuning is also
performed [Chen et al., 2020]

e Solutions to improving robustness transfer from pre-training to fine-tuning:
o Adversarial contrastive learning [Fan et al., 2021, Gowal et al., 2021]
o Robust pre-training + model sparsification [Chen et al., 2022]

29


https://openaccess.thecvf.com/content_CVPR_2020/papers/Chen_Adversarial_Robustness_From_Self-Supervised_Pre-Training_to_Fine-Tuning_CVPR_2020_paper.pdf
https://arxiv.org/pdf/2111.01124.pdf
https://openreview.net/forum?id=bgQek2O63w
https://proceedings.mlr.press/v162/chen22ae/chen22ae.pdf

Adversarial Contrastive Learning (AdvCL)

e AdvCL [Fan et al., 2021]: Leverages adversary-related data transformations (i.e., ‘views’)
to create ‘positive’ data pairs
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https://arxiv.org/pdf/2111.01124.pdf

Robust Pre-training + Model Pruning

Model Pruning: Finding sparse subnetwork from dense model without performance loss
— ‘Winning ticket’ in lottery ticket hypothesis (LTH) [Frankle et al., 2018]

(Robust) Dense Pre-training Sparse Subnetworks

e Sparsity from pre-trained robust model
Tdentify can be transferred on diverse downstream
)  Heker O tasks, to preserve BOTH standard and
Standard Adversarial robust generalization, under BOTH
Lranster Lrausfer standard and adversarial training regimes

L

Double-Win
Tickets

O

[Chen et al., 2022] 31



https://arxiv.org/abs/1803.03635?fileGuid=W7n6QtTkCpYUnzp6
https://proceedings.mlr.press/v162/chen22ae/chen22ae.pdf

Part 3

Foundation Models for Code
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Emerging Al Applications to Code/Programming Language

2017

A Survey of Machine Learning for Big Code and Naturalness Proof Engineering, Adaptatlon,

Repair, and Learning for Software

MILTIADIS ALLAMANIS, Microsoft Research (PEARLS)
EARL T. BARR, University College London DARPA AIE 2021

PREMKUMAR DEVANBU, University of California, Davis
CHARLES SUTTON, University of Edinburgh and The Alan Turing Institute INACTIVE G O

Notice ID
DARPA-PA-21-04-04

Project CodeNet: A Large-Scale Al for N
Code Dataset for Learning a Diversity of Department/ind. Agency

DEPT OF DEFENSE

COding TaSkS Sub-tier

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY (DARPA)
Office

Ruchir Puri, David S. Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladmir DEF ADVANCED RESEARCH PROJECTS AGCY
Zolotov, Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, Veronika Thost,
Luca Buratti, Saurabh Pujar, Ulrich Finkler. 2021

[GitHub] &9 © NeurlPS’21




Emerging Al Applications to Code

e Autocompletion [Svyatkovskiy et al., 2021]

Text text = new Text(parent, SWT.NONE);
text.

o setLayoutData(Object layoutData) : void - Control - 83 %
@ setText(String string) : void - Text - 48 %

© addModifyListener(ModifyListener listener) : void - Text - 36 %
@ getText() : String - Text - 15 %

@ setEnabled(boolean enabled) : void - Control - 10 %
Press '~Space' to show Java Proposals

e Code repair [Yasunaga et al., 2021]

Bad example

x = analysis.get(ip, None)
if not x:

print ("PANIC! No {}"
format(ip.strip())

-<vector>
#include-<algorithm>

int-foo(std::vector<int>

publi td:vector<ints

File: v

* IntelliCode suggestion based on this context
bl

Good example

x = analysis.get(ip, None)
if not x:
print ("PANIC! No {}".
format(ip.strip()))

No error — fixed!

@ h,‘;k

@ % begin

@ % push_back
@ % end
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https://ieeexplore.ieee.org/abstract/document/9463109
http://proceedings.mlr.press/v139/yasunaga21a.html

ML Model for Code Tasks

Encoder

def E(self, nums1, nums2):

m, n = len(nums1), len(nums2)
while n > 0:
if m <= 0 or nums2[n-1] >= nums1[m-1]:
nums1[m+n-1] = nums2[n-1]

nums1[m+n-1] = nums1[m-1]
m-=1

Program

Distributed
representation

— Predict merge
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(Worst-case) Robustness Problem of Code Model?

Evaluation: “Perturb” an input program (P) to justify robustness of code model
Challenge: How to define “code perturbation™?

Adv. perturbations

Image:

O Similar Different

/|\

Visual similarity:

/\
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(Worst-case) Robustness Problem of Code Model?

Evaluation: “Perturb” an input program (P) to justify robustness of code model?

Challenge: How to define “code perturbation™?

def foo():
x = fool()
y = foo2()
print("Hello World")

Program (P):

Different
Functional similarity:.

olollo

ollolo
ololllo
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Obfuscation as Perturbation Operation in Code

def foo(): Replacing x with Q: def foo():
x = fool() Q = fool()

y = foo2() HJ:I Q = y = f002()

print("Hello World") print("Hello World")

Original program Obfuscation: Variable Obfuscated program
renaming/replacement

Different
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Obfuscation as Perturbation Operation in Code

Obfuscation: Two broad classes — replace and insert transformations

lef sum_till(n):
Replace Insert

transform sum =0 f
/ foriin range(n):\:ﬂns o
sum += i

return sum

-f sum_till(n): def sum_till(n):

————

testi= 0

fori ip_ range(n):
itesti+= i for i in range(n):
sum += i

return sum

r
|
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Obfuscation as Perturbation Operation in Code

Original program (non-adversarial)

def __setitem__(self, name, val):

Code model

Obfuscated program (non-adversarial)

def __setitem__(self, name, val):

vaI = forbid_multi_line_headers(name, val, self.encoding)

MIMEText.__setitem__(self|virtualname| val

Adversarial program

def __setitem__(self,[gisrc|val):
name, val = forbid_multi_line_headers(gisrc, jval, self.encoding)

MIMEText. setitem__

Set item .
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Adversarial Program for Robustness Evaluation of Code Models

Adversarial program: Optimized obfuscated code to fool code models

Two design problems:
e Site selection: Where to perturb in the code?
e Perturbation content: How to perturb?

Solution: First-order optimization-based adversarial program generation methods
[Yefet et al., 2020] [Ramakrishnan et al., 2020] [Srikant et al., 2021]
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https://openreview.net/forum?id=PH5PH9ZO_4

Adversarial Program Generation

; . . : def foo():
Z is our site selection variable

il ) u is the site perturbation variable X = f%ﬂ O
x = fool() y = foo2()

y = foo02() FrintFHello World")
print("Hello World")

u
x y fool foo2 {x,y, foo1,fo02, T,Q,R, a, b, c}

\ Optimization for site selection
and perturbation

def foo():
[]= fool()
y =[] 1 0 0 1

print("Hello World")

x y fool foo2 pperturbed =z.u+(1-2).P

: where 2Z<K, Ze[0 1]
u ; E E E Su =1, ueo, 1V

{x,y, foo1,foo2, T,Q,R,a,b,c}

Target
label
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Example of Adversarial Program for Code Summarization

Original
program

Random site
selection

Optimized
site selection

Unperturbed

def _call_(self, *a, *ka): Prediction: call
for key, value in dict(*a, **ka).items(): setattr(self, key, value)

return self

Random site-selection; Optimal site-perturbation (Ramakrishnan et al., 2020)
def __call__(self, *a, **ka): Prediction: call

for value in dict(*a, **ka).items(): setattr(self,value)

return self

Optimal site-selection; Optimal site-perturbation + Smoothing

def __call__(self, **ka): Prediction: create
for key, value in dict( **ka).items(): setattr(self, key, value)
return self

Example from [Srikant et al., 2021]
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Takeaways — Robustness Evaluation of Code Models

e Code obfuscation is a natural way to define code ‘perturbation’

e There exists worst-case obfuscation that can transform ‘benign’ code to
‘adversarial’ code for ML models

e In design of adversarial code, both ‘where to perturb’ and ‘how to perturb’ matter
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How to Robustify Code Models?

Contrastive representation learning for code: Since ‘perturbation’
(obfuscation) is a type of code transformation, leverages contrastive learning to
learn ‘invariant’ code representations across ‘diverse’ transformations

E.g., ContraCode (Jain. et al., 2022)

Given a program, Maximize similarity with equivalent programs

Positive
function (len) { function (n) { while (i <n) { ... } } pair
for (i = 0; i <len, i++) {
} function (str, len) { return str.slice(@, len); }
g Negative
function f(n) { return n<2 ? 1 : f(n-1) + f(n-2); } .
pairs

. Minim_ize Similarity with function (arr) { for (i of arr) { ... } }
functionally different programs



https://arxiv.org/abs/2007.04973

Contrastive Representation Learning (from Vision to Code)

Contrastive learning: Learn representations by prompting data transformation invariance
(Chen et al., 2020; Foster et al., 2021)

A Projection
S

Maximise

similarity

\ Projection
N Encoder and @
SimCLR'’s architecture

(Chen et al., 2020)

~—""Image transformations (positive pair)

(SImCLR architecture; image from TDS blog) 46


https://arxiv.org/abs/2002.05709
https://arxiv.org/pdf/2010.09515.pdf
https://towardsdatascience.com/improving-transformation-invariance-in-contrastive-representation-learning-63f881ea1ac2

Robustness from ‘Adversarial’ Views of Code

e Regards adversarial code (worst-case obfuscation) and benign code as a positive pair,
then contrastive learning enforces ‘robustness’ due to transformation ‘invariance’

Obfuscation 1

. Defender:

similarity

Obfuscation 2
(adversarial)

_>/

Two-player
game

Code example from [Yefet et al., 2020] Attacker: minimize similarity
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Robustness Gain by Adversarial Code Contrastive Learning

Ground-truth program
def _makeOne(self,discriminator}None

,family=None):
from ..index import AllowedIndex

return index

: index = AllowedIndex,family:family)
|
|

Different ! Poglen Same program
| def _makeOne(selfNone
program i , family=None): (robust)
(non-robust) ! from ..index import AllowedIndex

index = AllowedIndexfamily:family)
return index

Vanilla representation network Adv. CL-enabled network

e

Explanation by example (example w/ similar representation
¥ o B y ple ( P P )

def buildIndex(self,1):

index = self.mIndex() def _makeOne(self,discriminator=None

family=None,action_Mode=None):

for strat, end, value in self.l:
index.add(strat, end)
return index

from ..indexes import FieldIndex
return FieldIndex(discriminator, family,action_mode)




Contrastive Representation Learning (Vision & Code)

Image transformations (Chen et al., 2020)

S ‘.

v |

(b) Crop and resize  (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter) Co ntraStlve

learning

Adversarial code transformations

sum_till(n):
Replace sum = 0 Insert

transform ..
\/ for i in range(n): transform
sum +=i

return sum

Contrastive

sum_till(n): sum_till(n):

learning

return sum
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Part 4

Hands-on Demo & Code Walkthroughs

bit.ly/nips-22-content
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http://bit.ly/nips-22-content

Overview

e Evaluation setup for vision models (image classification)
e Evaluation setup for code models (code summarization)
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Modality I: Computer Vision

e Empirical evaluations of similar capacity models on the robustness
benchmark datasets (image classification: top-1 accuracy, AUPR, mFR,
mT5D).

e The datasets will cover different aspects like corruptions, perturbations,
background dependence.

e Possible attribution factors of improved robustness.

o Masking
Sensitivity analysis
Frequency spectrum

Loss landscape
Mean attention distance (relative receptive field)

O O O O
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Modality Il: Code

e Empirical evaluations of similar capacity models on the task of code
summarization.
e Record F1-scores of the models on clean examples and adversarial

examples.
o Random site-selection + optimal site-perturbation. [Ramakrishnan et al., 2020]
o Optimal site-selection + optimal site-perturbation. [Srikant et al., 2021]

Thanks to Jinghan Jia (Michigan State University) for helping with this part.
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https://openreview.net/forum?id=PH5PH9ZO_4

Part 5

Concluding Remarks and Q&A
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Take-Aways

e Foundational robustness: evaluation and enhancement of model correctness
against natural and adversarial data shifts - a foundation of trustworthy Al

e The prevalence of foundation models also shift the focus of robustness from
task-centric to representation-centric

e Lunch is still not free: Higher standard accuracy of downstream tasks using
foundation models # improved robustness

e Methods to evaluate and improve foundational robustness in pre-training and
fine-tuning stages

e Robustness comes best with practice
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Resources

e J.Z. Kolter and A. Madry: Adversarial Robustness -

Theory and Practice (NeurlPS 2018 Tutorial)
e Pin-Yu Chen: Adversarial Robustness of Dee
Learning Models ZSECCV 2020 Tutorial)
e Pin-Yu Chen and gla Liu: Zeroth Order Optimization:
Theory and Applications to Deep Learning (CVPR Adversarial Robustness
2020 Tutorial) for Machine Learning

e Pin-Yu Chen and Sayak Paul: Practical Adversarial
Robustness in Deep Learning: Problems and Solutions
CVPR 2021 Tutorial) .

e Pin-Yu Chen: Holistic Adversarial Robustness for Deep

earnln (MLSS 2021 Tutorial) _

e Pin- hen: Adversarial Machine Learning for Good
AAAI 2022 Tutorial)
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https://www.youtube.com/watch?v=TwP-gKBQyic
https://www.youtube.com/watch?v=TwP-gKBQyic
https://www.youtube.com/watch?v=-QbKyOuEoxc
https://www.youtube.com/watch?v=-QbKyOuEoxc
https://www.youtube.com/watch?v=17AL1mS3uxw
https://www.youtube.com/watch?v=17AL1mS3uxw
https://sites.google.com/view/par-2021
https://sites.google.com/view/par-2021
https://youtu.be/rrQi86VQiuc
https://youtu.be/rrQi86VQiuc
https://sites.google.com/view/advml4good

