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Motivation

Dynamical systems appear in

physical systems,
reinforcement learning & control
natural language processing (i.e. RNN, LSTM)

Goal: Efficient learning guarantees for nonlinear systems

Challenge: spatio-temporal dependencies, nonlinear state equation,
single trajectory . . .
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State Equation

Nonlinear systems with state observations

state ht ∈ Rn

input ut ∈ Rp ht+1 = ϕ(ht ,ut ;θ⋆) +wt

noise wt ∈ Rn

system dynamics θ⋆ ∈ Rd

Example: A nonlinear linear dynamical system
State equation: ht+1 = ϕ(Aht + But) +wt .
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Learning from Finite Data

Run the system until time T , collect (ht ,ut)
T
t=1

1 Set loss function L̂(θ) = 1
2(T−L)

∑T−1
t=L ∥ht+1 − ϕ(ht ,ut ;θ)∥2ℓ2 .

2 Find θ̂ := argminθ∈Rd L̂(θ) (e.g. via gradient descent)

3 Hope that θ̂ ≈ θ⋆

Challenges:

temporal dependence

nonlinearity

finite samples
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Nonlinear Stability

Nonlinear systems: Use ρ-stability

Definition (ρ-stabilized system)

(1) Pick inputs ut = π(ht) + zt . Fix (zτ )
t−1
τ=0 and (wτ )

t−1
τ=0.

(2) Denote the state sequence resulting from initial state h0 = α by ht(α).
(3) There exists Cρ ≥ 1 and ρ ∈ (0, 1) such that for all α, (zt)t≥0 and
(wt)t≥0, we have

∥ht(α)− ht(0)∥ℓ2 ≤ Cρρ
t∥α∥ℓ2 ,

ρ corresponds to nonlinear spectral radius (not easy to calculate).

Key observation: System forgets the past quickly
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Assumptions on the System and Inputs

Assumption (Stability)

The closed loop system ϕ̃ is ρ-stable.

a linear dynamical system is ρ-stable if spectral radius ρ(A⋆) < 1.

a ρ-stable nonlinear system is a contractive system.

Assumption (Boundedness)

There exist scalars B, cw , σ > 0, such that (zt)t≥0
i.i.d.∼ Dz and

(wt)t≥0
i.i.d.∼ Dw obey ∥ϕ̃(0, zt ;θ⋆)∥ℓ2 ≤ B

√
n and ∥wt∥ℓ∞ ≤ cwσ for

0 ≤ t ≤ T − 1 with probability at least 1− p0 over the generation of data.
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Optimization Landscape

To concretely show how stability helps, we define the following loss
function, obtained from i.i.d. samples at time L− 1 and can be used as a
proxy for E[L̂].

Definition (Auxiliary Loss)

Suppose h0 = 0. Let (zt)t≥0
i.i.d.∼ Dz and (wt)t≥0

i.i.d.∼ Dw . The auxiliary
loss is defined as the expected loss at timestamp L− 1, that is,

LD(θ) =
1

2
E[∥hL − ϕ̃(hL−1, zL−1;θ)∥2ℓ2 ].
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Optimization Landscape

Assumption (One-point convexity & smoothness (OPCS))

There exist scalars β ≥ α > 0 such that the auxiliary loss LD(θ) satisfies

⟨θ − θ⋆,∇LD(θ)⟩ ≥ α∥θ − θ⋆∥2ℓ2 ,
∥∇LD(θ)∥ℓ2 ≤ β∥θ − θ⋆∥ℓ2 .

aka restricted secant inequality, and implies Polyak-Lojasiewicz
condition.

use OPC with one-point smoothness (rather than global smoothness).

example, nonlinear state equation ht+1 = ϕ(A⋆ht + B⋆zt) +wt , with
γ-increasing activation (i.e. ϕ′(x) ≥ γ > 0 for all x ∈ R).
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Main Result

Theorem (Main result – informal)

Suppose we run gradient descent algorithm, θτ+1 = θτ − η∇L̂(θτ ) to
solve the ERM problem. Suppose T ≳ d

α2(1−ρ)
and r ≳ σ

α

√
d

T (1−ρ) . Under

certain assumptions, the following statements hold with high probability
over the trajectory.

Uniform convergence of gradient: For all θ ∈ Bd(θ⋆, r), ∇L̂(θ)
satisfies

∥∇L̂(θ)−∇LD(θ)∥ℓ2 ≲ (σ + ∥θ − θ⋆∥ℓ2)

√
d

T (1− ρ)

Convergence of gradient descent: Set the learning rate
η = α/(16β2) and fix θ0 ∈ Bd(θ⋆, r). All gradient descent iterates θτ
on L̂(θ) satisfy

∥θτ − θ⋆∥ℓ2 ≲ (1− α2

β2
)τ∥θ0 − θ⋆∥ℓ2 +

σ

α

√
d

T (1− ρ)
.
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Case Study

Entrywise nonlinearity: ht+1 = ϕ(A⋆ht) + zt +wt

• A⋆ = [a⋆1 · · · a⋆n]T ∈ Rn×n.

• Assume ϕ′ ≥ γ > 0, |ϕ′|, |ϕ′′| ≤ 1 and ϕ(0) = 0.

Theorem (simplified)

Suppose the system satisfies ρ-stability.

Let wt
i.i.d.∼ N (0, σ2In) and zt

i.i.d.∼ N (0, Ip).

Suppose trajectory length T obeys T ≳ n log(T )/(1− ρ)

With proper learning rate and the initialization A(0) = 0, all gradient
descent iterates satisfy

∥a(τ)k − a⋆k∥ℓ2 ≲ (1− γ4(1− ρ)4

C 4
ρ n

2
)τ∥a(0)k − a⋆k∥ℓ2 +

σ

γ2

√
n

T (1− ρ)
.
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Case Study

Linear Dynamical System: ht+1 = A⋆ht +B⋆zt +wt

• [A⋆ B⋆] = [θ⋆
1 · · · θ⋆

n]
T ∈ Rn×(n+p).

• γ− := 1 ∧ λmin(Γ
B⋆
L + σ2ΓL), and γ+ := 1 ∨ λmax(Γ

B⋆
L + σ2ΓL).

Theorem (simplified)

Suppose ρ(A⋆) < 1.

Let wt
i.i.d.∼ N (0, σ2In) and zt

i.i.d.∼ N (0, σ2Ip).

Suppose trajectory length T obeys T ≳ (n + p) log(T )/(1− ρ)

With proper learning rate and the initialization [A(0) B(0)] = 0, all
gradient descent iterates satisfy

∥θ(τ)
k − θ⋆

k∥ℓ2 ≲ (1−
γ2−
γ2+

)τ∥θ(0)
k − θ⋆

k∥ℓ2 +
σ
√
γ+

γ−

√
n + p

T (1− ρ)
.
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Possible Extensions:

Partial state observations yt = Cht

NARMAX: yt+1 = ϕ(yt , . . . , yt−T ,ut , . . . ,ut−T ;θ⋆).

Better dependence on spectral radius ρ (e.g. by using martingales)
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