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Motivation

o Dynamical systems appear in
o physical systems,
e reinforcement learning & control
e natural language processing (i.e. RNN, LSTM)

Google

Translate

o Goal: Efficient learning guarantees for nonlinear systems

@ Challenge: spatio-temporal dependencies, nonlinear state equation,
single trajectory ...



State Equation

Nonlinear systems with state observations
o state h; ¢ R”

@ input u; € RP ht_|_1 = ¢(ht, Uy, 0*) -+ Wy

@ noise w; € R”

@ system dynamics 0, € R

Example: A nonlinear linear dynamical system
State equation: hy11 = ¢(Ah: + Bu;) + w;.



Learning from Finite Data

Run the system until time T, collect (hy, u:)._;
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© Set loss function £(6) = ﬁ S e — o(hy, ay; 0)||§2.
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Learning from Finite Data

Run the system until time T, collect (hy, u:)._;
© Set loss function £(6) = ﬁ S e — o(hy, ay; 0)||§2.
@ Find § := argmingcga £(8) (e.g. via gradient descent)

© Hope that § ~ 6,

Challenges:
@ temporal dependence
@ nonlinearity
o finite samples



Nonlinear Stability

Nonlinear systems: Use p-stability

Definition (p-stabilized system)

(1) Pick inputs uy = m(h;) + z;. Fix (z;)i_% and (w;)!_%.

(2) Denote the state sequence resulting from initial state hy = a by h:(cx).
(3) There exists C, > 1 and p € (0,1) such that for all ¢, (z;)¢>0 and
(Wt)t>0, we have

lhe(ce) = he(0)e, < Cop®lllley,

p corresponds to nonlinear spectral radius (not easy to calculate).




Nonlinear Stability

Nonlinear systems: Use p-stability

Definition (p-stabilized system)

(1) Pick inputs uy = m(h;) + z;. Fix (z;)i_% and (w;)!_%.

(2) Denote the state sequence resulting from initial state hy = a by h:(cx).
(3) There exists C, > 1 and p € (0,1) such that for all ¢, (z;)¢>0 and
(Wt)t>0, we have

lhe(ce) = he(0)e, < Cop®lllley,

p corresponds to nonlinear spectral radius (not easy to calculate).

Key observation: System forgets the past quickly
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Assumptions on the System and Inputs

Assumption (Stability)

The closed loop system ¢ is p-stable.

@ a linear dynamical system is p-stable if spectral radius p(A,) < 1.

@ a p-stable nonlinear system is a contractive system.

Assumption (Boundedness)

Q

There exist scalars B, c,,,0 > 0, such that (z;)s>0 "D, and

o v
(Wi)e>0 '~ Dy, obey ||4(0, z¢; 0,) e, < By/n and ||wyle, < cwo for
0 <t < T — 1 with probability at least 1 — py over the generation of data.
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Optimization Landscape

To concretely show how stability helps, we define the following loss
function, obtained from i.i.d. samples at time L — 1 and can be used as a
proxy for E[L].

Definition (Auxiliary Loss)

Suppose hy = 0. Let (zt)t>0 kg "D, and (w) >0 Hig- D,,. The auxiliary

loss is defined as the expected loss at timestamp L — 1, that is,

Lp(0) = —]E[HhL— d(hi_1,21-1;0)|7 ]
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Optimization Landscape

Assumption (One-point convexity & smoothness (OPCS))

There exist scalars 3 > « > 0 such that the auxiliary loss Lp(60) satisfies

(6 — 6.,VLD(8)) > |6 - 0.7,
IVLD(0)lle, < BII6 — sz,
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Optimization Landscape

Assumption (One-point convexity & smoothness (OPCS))

There exist scalars 3 > « > 0 such that the auxiliary loss Lp(60) satisfies

(6 — 6.,VLD(8)) > |6 - 0.7,
IVLD(0)lle, < BII6 — sz,

@ aka restricted secant inequality, and implies Polyak-Lojasiewicz
condition.

@ use OPC with one-point smoothness (rather than global smoothness).

@ example, nonlinear state equation hy11 = ¢(A.h: + B,z:) + wy, with
~-increasing activation (i.e. ¢/(x) >~ > 0 for all x € R).
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Main Result

Theorem (Main result — informal)

Suppose we run gradient descent algorithm, 6,1 = 6, — nVﬁA(HT) to

solve the ERM problem. Suppose T 2 Ezﬁ andr 2, 2, /ﬁ. Under

certain assumptions, the following statements hold with high probability
over the trajectory.
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Main Result

Theorem (Main result — informal)

Suppose we run gradient descent algorithm, 6,1 = 6, — nVﬁ(HT) to

solve the ERM problem. Suppose T 2 m andr 2 2 ﬁ. Under

certain assumptions, the following statements hold with high probability
over the trajectory.

~

o Uniform convergence of gradient: For all 6 ¢ BY(0,,r), VL(0)
satisfies

R d
IVL(0) = VLD(O)le, S (0 + (16 — 0x]le,)

T(1-p)
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Main Result

Theorem (Main result — informal)

Suppose we run gradient descent algorithm, 6,1 = 6, — nVﬁ(G ) to
solve the ERM problem. Suppose T 2 a2(f’7 ) andrz 2,/ T(l ) Under

certain assumptions, the following statements hold Wlth high probability
over the trajectory.

~

o Uniform convergence of gradient: For all 6 ¢ BY(0,,r), VL(0)
satisfies

R d
IVL(0) = VLD(O)le, S (0 + (16 — 0x]le,)

T(1-p)

o Convergence of gradient descent: Set the learning rate
n = a/(163%) and fix 8y € BY(0,,r). All gradient descent iterates 0.
on L(0) satisfy

16, = 8ulles < (1= )80 Bl + &y =2
63— g) 8= bde t A Ty
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Case Study

Entrywise nonlinearity: ht+1 = (b(A*ht) + Z; + Wy
e A, =[a; --- ai]T e R™".

e Assume ¢ > 7> 0, |¢/],[¢"] <1 and ¢(0) =

Theorem (simplified)

@ Suppose the system satisfies p-stability.
o Let wy " N(0,021,) and z. "<& N(0, 1 o)k
@ Suppose trajectory length T obeys T 2 nlog(T)/(1— p)

With proper learning rate and the initialization A(®) = 0, all gradient
descent iterates satisfy

4
Y (1—-0p N o n
Uy o0

a7 = 3l S (0 = e

atlle, + =4/ =——.
Heat 2y 7@ =)
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Case Study

Linear Dynamical System: ht+1 = A h; + B,z; + w;

o [A, B]=1[07 --- 07]T e R™x(ntp),
® 7y = 1 AN )\min(rf* =+ UzI‘L), and YV = 1 \V AmaX(I‘LB* + Uer).

Theorem (simplified)

e Suppose p(A,) < 1.
o Let wy " N(0,021,) and z; "% N(0, al,).
@ Suppose trajectory length T obeys T 2 (n+ p)log(T)/(1—p)

With proper learning rate and the initialization [A(©) B(0)] =0, all
gradient descent iterates satisfy

2
T z p
9()—* <1_7 7'0(0)_* _'_0-\/ﬂ n )
160 ~ 03l 5 (1.~ Y16 - 03l + P [ 75T
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Possible Extensions:

@ Partial state observations y; = Ch;

e NARMAX: Yt+1 = d)(yta ces YTy Uty U T 0*)
@ Better dependence on spectral radius p (e.g. by using martingales)
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