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Introduction

* Graph Data

— Social Networks

— Road Networks
— Drug interaction

* Graph Learning in
— Graph signal processing (GSP)
— Machine learning (ML) &

— Deep learning (DL)

— Geometric deep learning (GDL)
— Graph neural networks (GNNs)
* Tasks

— Graph Clustering
— Graph Classification




Introduction
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— Dilations and translations of localized functions (wavelets)
— Multiscale property and filter bank association (fast algorithms)
— Excellent for Euclidean data (signals, images, videos, etc.)

Question: How to construction wavelet-like systems on graphs for GSP?




Introduction

Question: How to construction wavelet-like systems on graphs for GSP?
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Orthogonal eigen-pairs for 12(G) (e.g., from graph Laplacian)
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Framelets on Graphs (Undecimated Systems)

* Ingredients from R:

— framelet system
‘;D_]' — {CE_?.: 3(1)‘+ ey B[Tjj}

i
— filter bank .
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— refinement structure:
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* UFS (Undecimated framelet systems on graph, § = G):
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Framelets on Graphs (Decimated Systems)

* Ingredients from R:

— framelet system
U, = {a;; 8Y,..., 87
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— filter bank (1) (ri—1) @
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* DFS (Decimated framelet systems on graph, §; different):
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Framelets on Graphs REES
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* Characterization Theorems for decimated Tight framelet system: i%\{\
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e (Construction:

— Graph clustering algorithms for the coarse-grained chain (multi-scale)

— Orthogonal eigen-pairs through graph Laplacian and Gram-Schmidt orthogonalization
— Careful design of filter banks so that ¢, (Q;) = d.¢
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Fast G-Framelet Transforms (FGT)

* Ingredients:
— PR filter banks

:

— Discrete Fourier transforms (DFT and adjoint DFT) on graphs:
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— Discrete convolution, down- and up-sampling operators on graphs
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Fast G-Framelet Transforms (FGT)

* Ingredients:
— PR filter banks
— Discrete Fourier transforms (DFT and adjoint DFT) on graphs

— Discrete convolution, down- and up-sampling operators on graphs

* Multilevel G-framelet decomposition and reconstruction (FGT):
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Graph Signal Representation via FGT

Multiscale Representation
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GNNs via FGT

* FGConv (framelet graph convolution):

gx [ =V((Wg)o (W[))

— g: trained filter
— f: graph signal.
— V, W: FGT decomposition and reconstruction operators

Fout = o (V(G(W(F"W))))

e GNN architecture via FGConv:
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FGConv

FGConv — FGConv — SuMPooL — MLP.




GNNs via FGT

* Graph Data Sets and Classification

Table 5: Mean test accuracy (in percentage) and standard deviation of FGCONV-SUM as compared

Table 4: Statistical information of the datasets used for graph classification
with existing methods on the benchmark graph classification datasets, over 10 repetitions.

Datasets PROTEINS MUTAG D&D
Methods PROTEINS MUTAG D&D
Max. #Nodes 620 28 5,748
Min. #Nodes 4 10 30 SP 75.07" 85.79° -
Avg. #Nodes 39.06 17.93  284.32 GRAPHLET 71.67" 81.58" 78.45*
Avg. #Edges 72.82 19.79  715.66 RW 74.22° 83.68" -
#Graphs 1,113 188 1,178 WL 72.92* 80.72* 77.95*
7+ Classes 2 2 2 GIN 76.2 89.4 -
PATCHYSAN 75.00 91.58 76.27
DGCNN 75.54 85.83 79.37
DirrPooL 76.25 - 80.64
SAGPooL 72.17 - 77.07
E1GENPOOL 76.6 - 78.6
= . E | CEE G-U-NETs 77.68 - 82.43
\\ \\ 9 FGConv-SuMm 78.3+2.26 90.8+2.50 82.94+2.55
PR . oo o ot o Py —— W o ey W) “+” denotes the record retrieved from Niepert et al. (2016).
’ * =T I T ‘~> means that there is no public record for the method on the dataset.
N toc WA WE wom AR g I The records without superscription are retrieved from their corresponding
(a) PROTEINS (b) MUTAG (c) D&D original papers.
Figure 9: Plots of losses against epoch from one repetition on the three benchmark graph classifi- ! The decimal place is not modified when transferring the results.
cation datasets. The early stopping chechpoint corresponds to the epoch where the model is saved

for evaluation on the test set, i.e. when the smallest validation loss was achieved.

! The top three scores are highlighted as: First, Second, and Third.



Summary

e Graph signal processing (GSP), machine learning (ML), deep learning (DL), geometric deep
learning (GDL), and graph neural networks (GNNs) deal with common graph structure data.

 Wavelet-like systems on graphs play an important role in the above areas like the
wavelet/framelet systems on Euclidean spaces.

* In terms of the localized kernel method for defining “dilation” and “translation”, we can
construct decimated and undecimated framelets on graphs based on coarse-grained chains
and orthogonal eigen-pairs.

e Fast G-framelet transforms (FGT) are established with filter bank association
* Applications of FGT in graph signal representation (Minnesota road network) are presented.

 FGT can be used to define graph convolution (FGConv) for graph neural networks (GNNs).
We build a GNN with the FGConv-FGConv-SumPool-MLP architecture.

* Applications of our GNNs in graph classification demonstrate state-of-the-art performance.
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