Accelerated Zeroth-Order and First-Order Momentum Methods from Mini to Minimax Optimization

Feihu Huang¹, Shangqian Gao¹, Jian Pei², Heng Huang¹

University of Pittsburgh, USA
Simon Fraser University, Canada

NeurIPS | 2022

Thirty-sixth Conference on Neural Information Processing Systems

- Accelerated Zeroth- & First-Order Momentum Methods
- Convergence Properties
- Experimental Results
- Conclusions

- Accelerated Zeroth- & First-Order Momentum Methods
- Convergence Properties
- Experimental Results
- Conclusions

- Zeroth-order methods are a class of powerful optimization tools to solve many complex machine learning problems, whose explicit gradients are difficult or even infeasible to access.
- Minimax optimization can effectively solve the problems with a hierarchical structure, so it is widely used to many machine learning applications such as adversarial training and robust federated learning.

Background

For example, the robust federated learning could be defined as:

$$\min_{w \in \Omega} \max_{p \in \Pi} \bigg\{ \sum_{i=1}^{n} p_i \mathbb{E}_{\xi \sim \mathcal{D}_i} [f_i(w;\xi)] - \lambda \psi(p) \bigg\},\$$

where $p_i \in (0,1)$ denotes the proportion of *i*-th device in the entire model, and $f_i(w;\xi)$ is the loss function on *i*-th device, and $\lambda > 0$ is a tuning parameter, and $\psi(p)$ is a (strongly) convex regularization. Here $\Pi = \{p \in \mathbb{R}^n : \sum_{i=1}^n p_i = 1, p_i \ge 0\}$ is a *n*-dimensional simplex, and $\Omega \subseteq \mathbb{R}^d$ is a nonempty convex set.

Background

Accelerated Zeroth- & First-Order Momentum Methods

- Convergence Properties
- Experimental Results
- Conclusions

Zeroth-Order Gradient Estimators

$$\min_{x \in \mathcal{X}} f(x) = \mathbb{E}_{\xi \sim \mathcal{D}}[f(x;\xi)],$$

$$\hat{\nabla}f(x;\xi) = \frac{f(x+\mu u;\xi) - f(x;\xi)}{\mu/d}u,$$

where $u \in \mathbb{R}^d$ is a vector generated from the uniform distribution over the unit sphere, and μ is a smoothing parameter. Let $f_{\mu}(x;\xi) = \mathbb{E}_{u \sim U_B}[f(x+\mu u;\xi)]$ be a smooth approximation of $f(x;\xi)$, where U_B is the uniform distribution over the *d*-dimensional unit Euclidean ball

Momentum Techniques:

1) Apply on the variables

2) Apply on the gradients

$$\min_{x \in \mathcal{X}} f(x) = \mathbb{E}_{\xi \sim \mathcal{D}}[f(x;\xi)],$$

Algorithm 1 Acc-ZOM Algorithm for Mini Optimization

- 1: Input: T, parameters $\{\gamma, k, m, c\}$ and initial input $x_1 \in \mathcal{X}$;
- 2: initialize: Draw a sample ξ_1 , and sample a vector $u \in \mathbb{R}^d$ from uniform distribution over unit sphere, then compute $v_1 = \hat{\nabla} f(x_1; \xi_1)$, where the zeroth-order gradient is estimated from (3);

3: for
$$t = 1, 2, ..., T$$
 do

- 4: Compute $\eta_t = \frac{k}{(m+t)^{1/3}};$
- 5: if $\mathcal{X} = \mathbb{R}^d$ then
- 6: Update $x_{t+1} = x_t \gamma \eta_t v_t;$
- 7: else

8: Update
$$\tilde{x}_{t+1} = \mathcal{P}_{\mathcal{X}}(x_t - \gamma v_t)$$
, and $x_{t+1} = x_t + \eta_t(\tilde{x}_{t+1} - x_t)$;

- 9: end if
- 10: Compute $\alpha_{t+1} = c\eta_t^2$;
- 11: Draw a sample ξ_{t+1} , and sample a vector $u \in \mathbb{R}^d$ from uniform distribution over unit sphere, then compute $v_{t+1} = \hat{\nabla} f(x_{t+1}; \xi_{t+1}) + (1 - \alpha_{t+1}) [v_t - \hat{\nabla} f(x_t; \xi_{t+1})]$, where the zeroth-order gradients are estimated from (3);

12: end for

- 13: Output: (for theoretical) x_{ζ} chosen uniformly random from $\{x_t\}_{t=1}^T$.
- 14: **Output:** (for practical) x_T .

$$\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} f(x, y) = \mathbb{E}_{\xi \sim \mathcal{D}'}[f(x, y; \xi)],$$

Algorithm 2 Acc-ZOMDA Algorithm for Minimax Optimization

- 1: Input: T, parameters $\{\gamma, \lambda, k, m, c_1, c_2\}$ and initial input $x_1 \in \mathcal{X}$ and $y_1 \in \mathcal{Y}$;
- 2: initialize: Draw a mini-batch samples $\mathcal{B}_1 = \{\xi_i^1\}_{i=1}^b$, and draw vectors $\{\hat{u}_i \in \mathbb{R}^{d_1}\}_{i=1}^b$ and $\{\tilde{u}_i \in \mathbb{R}^{d_2}\}_{i=1}^b$ from uniform distribution over unit sphere, then compute $v_1 = \hat{\nabla}_x f(x_1, y_1; \mathcal{B}_1)$ and $w_1 = \hat{\nabla}_y f(x_1, y_1; \mathcal{B}_1)$, where the zeroth-order gradients are estimated from (4) and (5);

3: for
$$t = 1, 2, ..., T$$
 do

- 4: Compute $\eta_t = \frac{k}{(m+t)^{1/3}};$
- 5: if $\mathcal{X} = \mathbb{R}^{d_1}$ then
- 6: Update $x_{t+1} = x_t \gamma \eta_t v_t;$
- 7: else

8: Update
$$\tilde{x}_{t+1} = \mathcal{P}_{\mathcal{X}}(x_t - \gamma v_t)$$
 and $x_{t+1} = x_t + \eta_t(\tilde{x}_{t+1} - x_t);$

- 9: end if
- 10: Update $\tilde{y}_{t+1} = \mathcal{P}_{\mathcal{Y}}(y_t + \lambda w_t)$ and $y_{t+1} = y_t + \eta_t(\tilde{y}_{t+1} y_t);$
- 11: Compute $\alpha_{t+1} = c_1 \eta_t^2$ and $\beta_{t+1} = c_2 \eta_t^2$;
- 12: Draw a mini-batch samples $\mathcal{B}_{t+1} = \{\xi_i^{t+1}\}_{i=1}^b$, and draw vectors $\{\hat{u}_i \in \mathbb{R}^{d_1}\}_{i=1}^b$ and $\{\tilde{u}_i \in \mathbb{R}^{d_2}\}_{i=1}^b$ from uniform distribution over unit sphere;
- 13: Compute $v_{t+1} = \hat{\nabla}_x f(x_{t+1}, y_{t+1}; \mathcal{B}_{t+1}) + (1 \alpha_{t+1}) [v_t \hat{\nabla}_x f(x_t, y_t; \mathcal{B}_{t+1})]$ and $w_{t+1} = \hat{\nabla}_y f(x_{t+1}, y_{t+1}; \mathcal{B}_{t+1}) + (1 \beta_{t+1}) [w_t \hat{\nabla}_y f(x_t, y_t; \mathcal{B}_{t+1})]$, where the zeroth-order gradients are estimated from (4) and (5).
- 14: end for
- 15: Output: (for theoretical) x_{ζ} and y_{ζ} chosen uniformly random from $\{x_t, y_t\}_{t=1}^T$.
- 16: **Output:** (for practical) x_T and y_T .

$$\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} f(x, y) = \mathbb{E}_{\xi \sim \mathcal{D}'}[f(x, y; \xi)],$$

Algorithm 3 Acc-MDA Algorithm for Minimax Optimization

- 1: Input: T, parameters $\{\gamma, \lambda, k, m, c_1, c_2\}$ and initial input $x_1 \in \mathcal{X}$ and $y_1 \in \mathcal{Y}$;
- 2: initialize: Draw a mini-batch samples $\mathcal{B}_1 = \{\xi_i^1\}_{i=1}^b$, and then compute stochastic gradients $v_1 = \nabla_x f(x_1, y_1; \mathcal{B}_1)$ and $w_1 = \nabla_y f(x_1, y_1; \mathcal{B}_1)$;

3: for
$$t = 1, 2, ..., T$$
 do

4: Compute
$$\eta_t = \frac{k}{(m+t)^{1/3}};$$

5: if $\mathcal{X} = \mathbb{R}^{d_1}$ then

6: Update
$$x_{t+1} = x_t - \gamma \eta_t v_t;$$

$$7:$$
 else

8: Update
$$\tilde{x}_{t+1} = \mathcal{P}_{\mathcal{X}}(x_t - \gamma v_t)$$
 and $x_{t+1} = x_t + \eta_t(\tilde{x}_{t+1} - x_t);$

9: end if

10: Update
$$\tilde{y}_{t+1} = \mathcal{P}_{\mathcal{Y}}(y_t + \lambda w_t)$$
 and $y_{t+1} = y_t + \eta_t(\tilde{y}_{t+1} - y_t);$

11: Compute
$$\alpha_{t+1} = c_1 \eta_t^2$$
 and $\beta_{t+1} = c_2 \eta_t^2$;

- 12: Draw a mini-batch samples $\mathcal{B}_{t+1} = \{\xi_i^{t+1}\}_{i=1}^b$, and then compute stochastic gradients $v_{t+1} = \nabla_x f(x_{t+1}, y_{t+1}; \mathcal{B}_{t+1}) + (1 \alpha_{t+1}) [v_t \nabla_x f(x_t, y_t; \mathcal{B}_{t+1})]$ and $w_{t+1} = \nabla_y f(x_{t+1}, y_{t+1}; \mathcal{B}_{t+1}) + (1 \beta_{t+1}) [w_t \nabla_y f(x_t, y_t; \mathcal{B}_{t+1})];$
- 13: end for

14: Output: (for theoretical) x_{ζ} and y_{ζ} chosen uniformly random from $\{x_t, y_t\}_{t=1}^T$.

15: **Output:** (for practical) x_T and y_T .

- Accelerated Zeroth- & First-Order Momentum Methods
- Convergence Properties
- Experimental Results
- Conclusions

Convergence Properties

Table 1: Query complexity comparison of the representative non-convex zeroth-order methods for finding an ϵ -stationary point of the black-box mini-optimization problem (1) and minimax-optimization problem (2), respectively. GauGE, UniGE and CooGE are abbreviations of Gaussian, Uniform and Coordinate-Wise smoothing gradient estimators, respectively. Here κ_y denotes the condition number for function $f(\cdot, y)$. Note that Appendix B provides a comparison of assumptions used in the zeroth-order methods, and Appendix C provides a detailed proof to obtain a correct query complexity of ZO-Min-Max algorithm (Liu et al., 2019b).

Problem	Algorithm	Reference	Estimator	Batch Size	Complexity
	ZO-SGD	Ghadimi and Lan (2013)	GauGE	O(1)	$O(d\epsilon^{-4})$
	ZO-AdaMM	Chen et al. (2019)	UniGE	$O(\epsilon^{-2})$	$O(d^2\epsilon^{-4})$
Mini	ZO-SVRG	Ji et al. (2019)	CooGE	$O(\epsilon^{-2})$	$O(d\epsilon^{-10/3})$
	ZO-SPIDER-Coord	Ji et al. (2019)	CooGE	$O(\epsilon^{-2})$	$O(d\epsilon^{-3})$
	SPIDER-SZO	Fang et al. (2018)	CooGE	$O(\epsilon^{-2})$	$O(d\epsilon^{-3})$
	Acc-ZOM	Ours	UniGE	O(1)	$O(d^{3/4}\epsilon^{-3})$
	ZO-Min-Max	Liu et al. (2019b)	UniGE	$O((d_1+d_2)\kappa_y^2\epsilon^{-2})$	$O((d_1 + d_2)\kappa_y^6 \epsilon^{-6})$
	ZO-SGDA	Wang et al. (2020)	GauGE	$O((d_1 + d_2)\tilde{\epsilon}^{-2})$	$O((d_1+d_2)\kappa_y^5\epsilon^{-4})$
	ZO-SGDMSA	Wang et al. (2020)	GauGE	$O((d_1 + d_2)\epsilon^{-2})$	$O((d_1+d_2)\kappa_y^2\epsilon^{-4})$
Minimax	ZO-SREDA-Boost	Xu et al. (2020a)	CooGE	$O(\max(\kappa_y \epsilon^{-1}, d_1 + d_2)\kappa_y \epsilon^{-1})$	$O((d_1 + d_2)\kappa_y^3 \epsilon^{-3})$
	Acc-ZOMDA	Ours	UniGE	O(1)	$\tilde{O}((d_1+d_2)^{3/4}\kappa_y^{4.5}\epsilon^{-3})$

 $\min_{x \in \mathcal{X}} f(x) = \mathbb{E}_{\xi \sim \mathcal{D}}[f(x;\xi)],$

 $\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} f(x, y) = \mathbb{E}_{\xi \sim \mathcal{D}'}[f(x, y; \xi)],$

Table 2: Gradient complexity comparison of the representative first-order methods for finding an ϵ -stationary point of the minimax problem (2). Here Y denotes the fact that there exists a convex constraint on variable, otherwise is N. Note that our theoretical results do not rely on any assumption on convex constraint sets \mathcal{X} and \mathcal{Y} , so it can be easily extend to the unconstrained setting.

Algorithm	Reference	Constraint on x, y	Loop(s)	Batch Size	Complexity
PGSVRG	Rafique et al. (2018)	N, N	Double	$O(\epsilon^{-2})$	$O(\kappa_y^3 \epsilon^{-4})$
SGDA	Lin et al. (2019)	N, Y	Single	$O(\kappa_y \epsilon^{-2})$	$O(\kappa_y^3 \epsilon^{-4})$
SREDA	Luo et al. (2020)	N, Y	Double	$O(\kappa_y^2 \epsilon^{-2})$	$O(\kappa_y^3 \epsilon^{-3})$
SREDA-Boost	Xu et al. (2020a)	N, N	Double	$O(\kappa_y^2 \epsilon^{-2})$	$O(\kappa_y^3 \epsilon^{-3})$
Acc-MDA	Ours	Y (N), Y	Single	O(1)	$ ilde{O}(\kappa_y^{4.5}\epsilon^{-3})$
Acc-MDA	Ours	Y (N), Y	Single	$O(\kappa_y^{\nu}), \ \nu > 0$	$\tilde{O}(\kappa_y^{(4.5-\nu/2)}\epsilon^{-3})$

$$\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} f(x, y) = \mathbb{E}_{\xi \sim \mathcal{D}'}[f(x, y; \xi)],$$

- Accelerated Zeroth- & First-Order Momentum Methods
- Convergence Properties
- Experimental Results
- Conclusions

Experimental Results

(1) Black-Box Adversarial Attack to DNNs

$$\min_{x \in \mathcal{X}} \frac{1}{n} \sum_{i=1}^{n} \max\left(f_{b_i}(x+a_i) - \max_{j \neq b_i} f_j(x+a_i), 0\right), \quad \text{s.t. } \mathcal{X} = \{\|x\|_{\infty} \le \varepsilon\}$$

Experimental Results

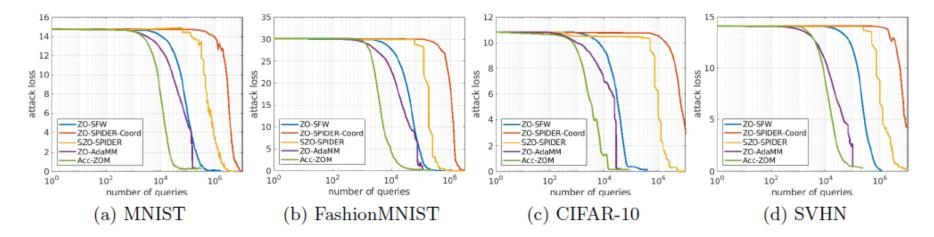


Figure 1: Experimental results of black-box adversarial attack on four datasets: MNIST, FashionMNIST, CIFAR-10 and SVHN.

(2) Data Poisoning Attack to Logistic Regression

$$\max_{x \in \mathcal{X}} \min_{y \in \mathcal{Y}} f(x, y) = h(x, y; \mathcal{D}_p) + h(0, y; \mathcal{D}_t),$$

s.t. $\mathcal{X} = \{ \|x\|_{\infty} \le \varepsilon \}, \ \mathcal{Y} = \{ \|y\|_2^2 \le \lambda_{\text{reg}} \}$

Experimental Results

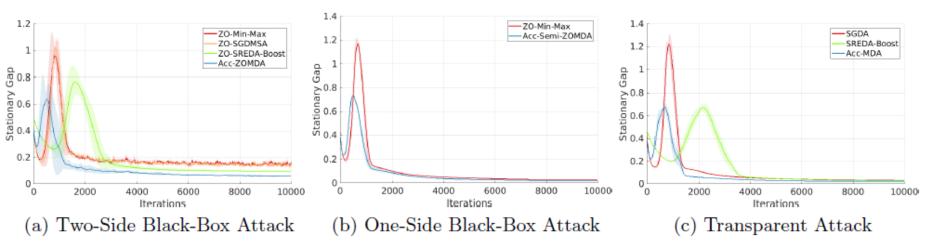


Figure 3: Stationary gap of different methods in two-side black-box scenario, one-side black-box scenario and transparent scenario.

- Accelerated Zeroth- & First-Order Momentum Methods
- Convergence Properties
- Experimental Results
- Conclusions

Conclusions

- I) We proposed a class of accelerated zeroth-order and first-order momentum methods for both mini- and minimax-optimization.
- 2) We provided an effective convergence analysis framework for our methods, and proved that our zerothorder methods obtain a low query complexity without any large batches. Meanwhile, our first-order method obtain a low gradient complexity without any large batches

Thanks! Q&A