Timezone: »
During the last decade, many areas of statistical machine learning have reached a high level of maturity with novel, efficient, and theoretically well founded algorithms that increasingly removed the need for heuristics and manual parameter tuning, which dominated the early days of neural networks. Reinforcement learning (RL) has also made major progress in theory and algorithms, but is somehow lagging behind the success stories of classification, supervised, and unsupervised learning. Besides the long-standing question for scalability of RL to larger and real world problems, even in simpler scenarios, a significant amount of manual tuning and human insight is needed to achieve good performance, e.g., as in exemplified in issues like eligibility factors, learning rates, the choice of function approximators and their basis functions for policy and/or value functions, etc. Some of the reasons for the progress of other statistical learning disciplines comes from connections to well- established fundamental learning approaches, like maximum-likelihood with EM, Bayesian statistics, linear regression, linear and quadratic programming, graph theory, function space analysis, etc. Therefore, the main question of this workshop is to discuss, how other statistical learning techniques may be used to developed new RL approaches in order to achieve properties including higher numerical robustness, easier use in terms of open parameters, probabilistic and Bayesian interpretations, better scalability, the inclusions of prior knowledge, etc.
Author Information
Jan Peters (TU Darmstadt & MPI Intelligent Systems)
Jan Peters is a full professor (W3) for Intelligent Autonomous Systems at the Computer Science Department of the Technische Universitaet Darmstadt and at the same time a senior research scientist and group leader at the Max-Planck Institute for Intelligent Systems, where he heads the interdepartmental Robot Learning Group. Jan Peters has received the Dick Volz Best 2007 US PhD Thesis Runner-Up Award, the Robotics: Science & Systems - Early Career Spotlight, the INNS Young Investigator Award, and the IEEE Robotics & Automation Society‘s Early Career Award as well as numerous best paper awards. In 2015, he was awarded an ERC Starting Grant. Jan Peters has studied Computer Science, Electrical, Mechanical and Control Engineering at TU Munich and FernUni Hagen in Germany, at the National University of Singapore (NUS) and the University of Southern California (USC). He has received four Master‘s degrees in these disciplines as well as a Computer Science PhD from USC.
Stefan Schaal (MPI-IS and USC)
Drew Bagnell (Carnegie Mellon University)
More from the Same Authors
-
2020 : Differentiable Implicit Layers »
Andreas Look · Simona Doneva · Melih Kandemir · Rainer Gemulla · Jan Peters -
2022 : How crucial is Transformer in Decision Transformer? »
Max Siebenborn · Boris Belousov · Junning Huang · Jan Peters -
2022 : Conditioned Score-Based Models for Learning Collision-Free Trajectory Generation »
Joao Carvalho · Mark Baierl · Julen Urain · Jan Peters -
2022 Poster: Information-Theoretic Safe Exploration with Gaussian Processes »
Alessandro Bottero · Carlos Luis · Julia Vinogradska · Felix Berkenkamp · Jan Peters -
2020 Poster: Self-Paced Deep Reinforcement Learning »
Pascal Klink · Carlo D'Eramo · Jan Peters · Joni Pajarinen -
2020 Oral: Self-Paced Deep Reinforcement Learning »
Pascal Klink · Carlo D'Eramo · Jan Peters · Joni Pajarinen -
2017 : Panel Discussion »
Matt Botvinick · Emma Brunskill · Marcos Campos · Jan Peters · Doina Precup · David Silver · Josh Tenenbaum · Roy Fox -
2017 : Hierarchical Imitation and Reinforcement Learning for Robotics (Jan Peters) »
Jan Peters -
2017 Poster: Multi-Modal Imitation Learning from Unstructured Demonstrations using Generative Adversarial Nets »
Karol Hausman · Yevgen Chebotar · Stefan Schaal · Gaurav Sukhatme · Joseph Lim -
2016 Poster: Catching heuristics are optimal control policies »
Boris Belousov · Gerhard Neumann · Constantin Rothkopf · Jan Peters -
2015 Poster: Model-Based Relative Entropy Stochastic Search »
Abbas Abdolmaleki · Rudolf Lioutikov · Jan Peters · Nuno Lau · Luis Pualo Reis · Gerhard Neumann -
2014 Poster: Incremental Local Gaussian Regression »
Franziska Meier · Philipp Hennig · Stefan Schaal -
2014 Demonstration: Learning for Tactile Manipulation »
Tucker Hermans · Filipe Veiga · Janine Hölscher · Herke van Hoof · Jan Peters -
2013 Workshop: Advances in Machine Learning for Sensorimotor Control »
Thomas Walsh · Alborz Geramifard · Marc Deisenroth · Jonathan How · Jan Peters -
2013 Workshop: Planning with Information Constraints for Control, Reinforcement Learning, Computational Neuroscience, Robotics and Games. »
Hilbert J Kappen · Naftali Tishby · Jan Peters · Evangelos Theodorou · David H Wolpert · Pedro Ortega -
2013 Poster: Probabilistic Movement Primitives »
Alexandros Paraschos · Christian Daniel · Jan Peters · Gerhard Neumann -
2012 Poster: Efficient high dimensional maximum entropy modeling via symmetric partition functions »
Paul Vernaza · Drew Bagnell -
2012 Spotlight: Efficient high dimensional maximum entropy modeling via symmetric partition functions »
Paul Vernaza · Drew Bagnell -
2012 Poster: Algorithms for Learning Markov Field Policies »
Abdeslam Boularias · Oliver Kroemer · Jan Peters -
2011 Poster: A Non-Parametric Approach to Dynamic Programming »
Oliver Kroemer · Jan Peters -
2011 Oral: A Non-Parametric Approach to Dynamic Programming »
Oliver Kroemer · Jan Peters -
2010 Spotlight: Switched Latent Force Models for Movement Segmentation »
Mauricio A Alvarez · Jan Peters · Bernhard Schölkopf · Neil D Lawrence -
2010 Poster: Switched Latent Force Models for Movement Segmentation »
Mauricio A Alvarez · Jan Peters · Bernhard Schölkopf · Neil D Lawrence -
2010 Poster: Movement extraction by detecting dynamics switches and repetitions »
Silvia Chiappa · Jan Peters -
2009 Workshop: Probabilistic Approaches for Control and Robotics »
Marc Deisenroth · Hilbert J Kappen · Emo Todorov · Duy Nguyen-Tuong · Carl Edward Rasmussen · Jan Peters -
2008 Poster: Bayesian Kernel Shaping for Learning Control »
Jo-Anne Ting · Mrinal Kalakrishnan · Sethu Vijayakumar · Stefan Schaal -
2008 Poster: Using Bayesian Dynamical Systems for Motion Template Libraries »
Silvia Chiappa · Jens Kober · Jan Peters -
2008 Poster: Fitted Q-iteration by Advantage Weighted Regression »
Gerhard Neumann · Jan Peters -
2008 Poster: Policy Search for Motor Primitives in Robotics »
Jens Kober · Jan Peters -
2008 Spotlight: Fitted Q-iteration by Advantage Weighted Regression »
Gerhard Neumann · Jan Peters -
2008 Oral: Policy Search for Motor Primitives in Robotics »
Jens Kober · Jan Peters -
2008 Poster: Local Gaussian Process Regression for Real Time Online Model Learning »
Duy Nguyen-Tuong · Matthias Seeger · Jan Peters -
2008 Poster: (Not) Sparse Coding »
Drew Bagnell · David M Bradley -
2007 Workshop: Robotics Challenges for Machine Learning »
Jan Peters · Marc Toussaint -
2007 Session: Spotlights »
Stefan Schaal -
2007 Session: Spotlights »
Stefan Schaal -
2006 Poster: Boosting Structured Prediction for Imitation Learning »
Nathan D Ratliff · David M Bradley · Drew Bagnell · Joel Chestnutt -
2006 Talk: Boosting Structured Prediction for Imitation Learning »
Nathan D Ratliff · David M Bradley · Drew Bagnell · Joel Chestnutt