Timezone: »
This workshop is intended for people who are interested in both machine learning and web search. With its tens of billions of unstructured and dynamic pages and its increasing number of users, the World Wide Web poses new great challenges to the existing machine learning algorithms, and at the same time it also fuels the rapid development of new machine learning techniques. This workshop aims at bringing machine learning and web search people together to discuss the fundamental issues in web search from relevance ranking and web spam detection to online advertising. The topics will be mainly focused on new web page ranking algorithms and also online advertising related issues, like click-rate prediction and content matching.
Author Information
Denny Zhou (Google DeepMind)
Olivier Chapelle (Google)
Thorsten Joachims (Cornell)
Thomas Hofmann (Google Switzerland)
More from the Same Authors
-
2023 : Policy-Gradient Training of Language Models for Ranking »
Ge Gao · Jonathan Chang · Claire Cardie · Kianté Brantley · Thorsten Joachims -
2023 : Policy-Gradient Training of Language Models for Ranking »
Ge Gao · Jonathan Chang · Claire Cardie · Kianté Brantley · Thorsten Joachims -
2021 Poster: Fairness in Ranking under Uncertainty »
Ashudeep Singh · David Kempe · Thorsten Joachims -
2020 Poster: MOReL: Model-Based Offline Reinforcement Learning »
Rahul Kidambi · Aravind Rajeswaran · Praneeth Netrapalli · Thorsten Joachims -
2019 : Opening Remarks »
Thorsten Joachims · Nathan Kallus · Michele Santacatterina · Adith Swaminathan · David Sontag · Angela Zhou -
2019 Workshop: Machine Learning with Guarantees »
Ben London · Gintare Karolina Dziugaite · Daniel Roy · Thorsten Joachims · Aleksander Madry · John Shawe-Taylor -
2019 Workshop: “Do the right thing”: machine learning and causal inference for improved decision making »
Michele Santacatterina · Thorsten Joachims · Nathan Kallus · Adith Swaminathan · David Sontag · Angela Zhou -
2019 : Thorsten Joachim: Fair Ranking with Biased Data »
Thorsten Joachims -
2019 Poster: Policy Learning for Fairness in Ranking »
Ashudeep Singh · Thorsten Joachims -
2017 : Equality of Opportunity in Rankings »
Thorsten Joachims · Ashudeep Singh -
2017 Workshop: From 'What If?' To 'What Next?' : Causal Inference and Machine Learning for Intelligent Decision Making »
Ricardo Silva · Panagiotis Toulis · John Shawe-Taylor · Alexander Volfovsky · Thorsten Joachims · Lihong Li · Nathan Kallus · Adith Swaminathan -
2016 : Panel Discussion »
Gisbert Schneider · Ross E Goodwin · Simon Colton · Russ Salakhutdinov · Thorsten Joachims · Florian Pinel -
2016 : Structured Prediction with Logged Bandit Feedback »
Thorsten Joachims -
2016 Workshop: "What If?" Inference and Learning of Hypothetical and Counterfactual Interventions in Complex Systems »
Ricardo Silva · John Shawe-Taylor · Adith Swaminathan · Thorsten Joachims -
2015 Poster: The Self-Normalized Estimator for Counterfactual Learning »
Adith Swaminathan · Thorsten Joachims -
2015 Spotlight: The Self-Normalized Estimator for Counterfactual Learning »
Adith Swaminathan · Thorsten Joachims -
2015 Poster: Double or Nothing: Multiplicative Incentive Mechanisms for Crowdsourcing »
Nihar Bhadresh Shah · Denny Zhou -
2014 Workshop: NIPS’14 Workshop on Crowdsourcing and Machine Learning »
David Parkes · Denny Zhou · Chien-Ju Ho · Nihar Bhadresh Shah · Adish Singla · Jared Heyman · Edwin Simpson · Andreas Krause · Rafael Frongillo · Jennifer Wortman Vaughan · Panagiotis Papadimitriou · Damien Peters -
2014 Poster: Spectral Methods meet EM: A Provably Optimal Algorithm for Crowdsourcing »
Yuchen Zhang · Xi Chen · Denny Zhou · Michael Jordan -
2014 Spotlight: Spectral Methods meet EM: A Provably Optimal Algorithm for Crowdsourcing »
Yuchen Zhang · Xi Chen · Denny Zhou · Michael Jordan -
2013 Workshop: Crowdsourcing: Theory, Algorithms and Applications »
Jennifer Wortman Vaughan · Greg Stoddard · Chien-Ju Ho · Adish Singla · Michael Bernstein · Devavrat Shah · Arpita Ghosh · Evgeniy Gabrilovich · Denny Zhou · Nikhil Devanur · Xi Chen · Alexander Ihler · Qiang Liu · Genevieve Patterson · Ashwinkumar Badanidiyuru Varadaraja · Hossein Azari Soufiani · Jacob Whitehill -
2013 Workshop: What Difference Does Personalization Make? »
Dilan Gorur · Romer Rosales · Olivier Chapelle · Dorota Glowacka -
2013 Poster: Learning Trajectory Preferences for Manipulators via Iterative Improvement »
Ashesh Jain · Brian Wojcik · Thorsten Joachims · Ashutosh Saxena -
2012 Poster: Learning from the Wisdom of Crowds by Minimax Entropy »
Denny Zhou · John C Platt · Sumit Basu · Yi Mao -
2011 Poster: An Empirical Evaluation of Thompson Sampling »
Olivier Chapelle · Lihong Li -
2011 Poster: Semantic Labeling of 3D Point Clouds for Indoor Scenes »
Hema Koppula · Abhishek Anand · Thorsten Joachims · Ashutosh Saxena -
2008 Workshop: Beyond Search: Computational Intelligence for the Web (day 2) »
Anton Schwaighofer · Junfeng Pan · Thomas Borchert · Olivier Chapelle · Joaquin Quiñonero-Candela -
2008 Workshop: Beyond Search: Computational Intelligence for the Web (day 1) »
Anton Schwaighofer · Junfeng Pan · Thomas Borchert · Olivier Chapelle · Joaquin Quiñonero-Candela -
2008 Poster: Tighter Bounds for Structured Estimation »
Olivier Chapelle · Chuong B Do · Quoc V Le · Alexander Smola · Choon Hui Teo -
2008 Poster: Large Margin Taxonomy Embedding for Document Categorization »
Kilian Q Weinberger · Olivier Chapelle -
2008 Spotlight: Large Margin Taxonomy Embedding for Document Categorization »
Kilian Q Weinberger · Olivier Chapelle -
2007 Poster: An Analysis of Inference with the Universum »
Fabian H Sinz · Olivier Chapelle · Alekh Agarwal · Bernhard Schölkopf -
2007 Spotlight: An Analysis of Inference with the Universum »
Fabian H Sinz · Olivier Chapelle · Alekh Agarwal · Bernhard Schölkopf -
2007 Poster: A General Boosting Method and its Application to Learning Ranking Functions for Web Search »
Zhaohui Zheng · Hongyuan Zha · Tong Zhang · Olivier Chapelle · Keke Chen · Gordon Sun -
2007 Spotlight: Learning with Transformation Invariant Kernels »
Christian Walder · Olivier Chapelle -
2007 Poster: Learning with Transformation Invariant Kernels »
Christian Walder · Olivier Chapelle -
2006 Poster: Implicit Surfaces with Globally Regularised and Compactly Supported Basis Functions »
Christian Walder · Bernhard Schölkopf · Olivier Chapelle -
2006 Poster: An Efficient Method for Gradient-Based Adaptation of Hyperparameters in SVM Models »
Sathiya Selvaraj Keerthi · Vikas Sindhwani · Olivier Chapelle -
2006 Poster: Branch and Bound for Semi-Supervised Support Vector Machines »
Olivier Chapelle · Vikas Sindhwani · Sathiya Selvaraj Keerthi