Timezone: »
Deterministic (variational) techniques are used all over Machine Learning to approximate Bayesian inference for continuous- and hybrid-variable problems. In contrast to discrete variable approximations, surprisingly little is known about convergence, quality of approximation, numerical stability, specific biases, and differential strengths and weaknesses of known methods. In this workshop, we aim to highlight important problems and to gather ideas of how to address them. The target audience are practitioners, providing insight into and analysis of problems with certain methods or comparative studies of several methods, as well as theoreticians interested in characterizing the hardness of continuous distributions or proving relevant properties of an established method. We especially welcome contributions from Statistics (Markov Chain Monte Carlo), Information Geometry, Optimal Filtering, or other related fields if they make an effort of bridging the gap towards variational techniques.
Author Information
Matthias Seeger (Amazon)
David Barber (University College London)
Neil D Lawrence (University of Cambridge)
Onno Zoeter (Microsoft Research Cambridge)
More from the Same Authors
-
2019 Poster: Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer learning »
Valerio Perrone · Huibin Shen · Matthias Seeger · Cedric Archambeau · Rodolphe Jenatton -
2018 : Research Panel »
Sinead Williamson · Barbara Engelhardt · Tom Griffiths · Neil Lawrence · Hanna Wallach -
2017 : Neil Lawrence, Francis Bach and François Laviolette »
Neil Lawrence · Francis Bach · Francois Laviolette -
2017 : Panel Session »
Neil Lawrence · Finale Doshi-Velez · Zoubin Ghahramani · Yann LeCun · Max Welling · Yee Whye Teh · Ole Winther -
2017 Tutorial: Deep Probabilistic Modelling with Gaussian Processes »
Neil D Lawrence -
2015 Workshop: Advances in Approximate Bayesian Inference »
Dustin Tran · Tamara Broderick · Stephan Mandt · James McInerney · Shakir Mohamed · Alp Kucukelbir · Matthew D. Hoffman · Neil Lawrence · David Blei -
2014 Workshop: ABC in Montreal »
Max Welling · Neil D Lawrence · Richard D Wilkinson · Ted Meeds · Christian X Robert -
2013 Workshop: Probabilistic Models for Big Data »
Neil D Lawrence · Joaquin Quiñonero-Candela · Tianshi Gao · James Hensman · Zoubin Ghahramani · Max Welling · David Blei · Ralf Herbrich -
2013 Session: Oral Session 1 »
Neil D Lawrence -
2012 Poster: Affine Independent Variational Inference »
Edward Challis · David Barber -
2012 Poster: A Unifying Perspective of Parametric Policy Search Methods for Markov Decision Processes »
Thomas Furmston · David Barber -
2012 Oral: A Unifying Perspective of Parametric Policy Search Methods for Markov Decision Processes »
Thomas Furmston · David Barber -
2012 Poster: Fast Variational Inference in the Conjugate Exponential Family »
James Hensman · Magnus Rattray · Neil D Lawrence -
2011 Poster: Learning sparse inverse covariance matrices in the presence of confounders »
Oliver Stegle · Christoph Lippert · Joris M Mooij · Neil D Lawrence · Karsten Borgwardt -
2011 Poster: Variational Gaussian Process Dynamical Systems »
Andreas Damianou · Michalis Titsias · Neil D Lawrence -
2010 Workshop: Numerical Mathematics Challenges in Machine Learning »
Matthias Seeger · Suvrit Sra -
2010 Placeholder: Opening Remarks »
Terrence Sejnowski · Neil D Lawrence -
2010 Spotlight: Switched Latent Force Models for Movement Segmentation »
Mauricio A Alvarez · Jan Peters · Bernhard Schölkopf · Neil D Lawrence -
2010 Poster: Switched Latent Force Models for Movement Segmentation »
Mauricio A Alvarez · Jan Peters · Bernhard Schölkopf · Neil D Lawrence -
2010 Session: Oral Session 6 »
Matthias Seeger -
2009 Workshop: Kernels for Multiple Outputs and Multi-task Learning: Frequentist and Bayesian Points of View »
Mauricio A Alvarez · Lorenzo Rosasco · Neil D Lawrence -
2009 Poster: Speeding up Magnetic Resonance Image Acquisition by Bayesian Multi-Slice Adaptive Compressed Sensing »
Matthias Seeger -
2008 Poster: Sparse Convolved Gaussian Processes for Multi-ouptut Regression »
Mauricio A Alvarez · Neil D Lawrence -
2008 Poster: Bayesian Experimental Design of Magnetic Resonance Imaging Sequences »
Matthias Seeger · Hannes Nickisch · Rolf Pohmann · Bernhard Schölkopf -
2008 Poster: Efficient Sampling for Gaussian Process Inference using Control Variables »
Michalis Titsias · Neil D Lawrence · Magnus Rattray -
2008 Spotlight: Efficient Sampling for Gaussian Process Inference using Control Variables »
Michalis Titsias · Neil D Lawrence · Magnus Rattray -
2008 Spotlight: Bayesian Experimental Design of Magnetic Resonance Imaging Sequences »
Matthias Seeger · Hannes Nickisch · Rolf Pohmann · Bernhard Schölkopf -
2008 Poster: Local Gaussian Process Regression for Real Time Online Model Learning »
Duy Nguyen-Tuong · Matthias Seeger · Jan Peters -
2008 Poster: Accelerating Bayesian Inference over Nonlinear Differential Equations with Gaussian Processes »
Ben Calderhead · Mark A Girolami · Neil D Lawrence -
2007 Oral: Bayesian Inference for Spiking Neuron Models with a Sparsity Prior »
Sebastian Gerwinn · Jakob H Macke · Matthias Seeger · Matthias Bethge -
2007 Poster: Bayesian Inference for Spiking Neuron Models with a Sparsity Prior »
Sebastian Gerwinn · Jakob H Macke · Matthias Seeger · Matthias Bethge -
2006 Workshop: Learning when test and training inputs have different distributions »
Joaquin Quiñonero-Candela · Masashi Sugiyama · Anton Schwaighofer · Neil D Lawrence -
2006 Workshop: Advances in Models for Acoustic Processing »
David Barber -
2006 Poster: Modelling transcriptional regulation using Gaussian Processes »
Neil D Lawrence · Guido Sanguinetti · Magnus Rattray -
2006 Poster: A Novel Gaussian Sum Smoother for Approximate Inference in Switching Linear Dynamical »
David Barber · Bertrand Mesot -
2006 Poster: Cross-Validation Optimization for Large Scale Hierarchical Classification Kernel Methods »
Matthias Seeger -
2006 Poster: Unified Inference for Variational Bayesian Linear Gaussian State-Space Models »
David Barber · Silvia Chiappa -
2006 Spotlight: Unified Inference for Variational Bayesian Linear Gaussian State-Space Models »
David Barber · Silvia Chiappa