Timezone: »
Semi-supervised methods use unlabeled data in addition to labeled data to construct predictors. While existing semi-supervised methods have shown some promising empirical performance, their development has been based largely based on heuristics. In this paper we study semi-supervised learning from the viewpoint of minimax theory. Our first result shows that some common methods based on manifold regularization and graph Laplacians do not lead to faster minimax rates of convergence. Thus, the estimators that use the unlabeled data do not have smaller risk than the estimators that use only labeled data. We then develop several new approaches that provably lead to improved performance. The statistical tools of minimax analysis are thus used to offer some new perspective on the problem of semi-supervised learning.
Author Information
John Lafferty (Yale University)
Larry Wasserman (Carnegie Mellon University)
Related Events (a corresponding poster, oral, or spotlight)
-
2007 Poster: Statistical Analysis of Semi-Supervised Regression »
Mon. Dec 3rd 06:30 -- 06:40 PM Room
More from the Same Authors
-
2020 Poster: PLLay: Efficient Topological Layer based on Persistent Landscapes »
Kwangho Kim · Jisu Kim · Manzil Zaheer · Joon Kim · Frederic Chazal · Larry Wasserman -
2016 Workshop: Adaptive and Scalable Nonparametric Methods in Machine Learning »
Aaditya Ramdas · Arthur Gretton · Bharath Sriperumbudur · Han Liu · John Lafferty · Samory Kpotufe · Zoltán Szabó -
2016 Poster: Local Minimax Complexity of Stochastic Convex Optimization »
sabyasachi chatterjee · John Duchi · John Lafferty · Yuancheng Zhu -
2016 Poster: Selective inference for group-sparse linear models »
Fan Yang · Rina Barber · Prateek Jain · John Lafferty -
2016 Poster: Statistical Inference for Cluster Trees »
Jisu KIM · Yen-Chi Chen · Sivaraman Balakrishnan · Alessandro Rinaldo · Larry Wasserman -
2015 Poster: Optimal Ridge Detection using Coverage Risk »
Yen-Chi Chen · Christopher Genovese · Shirley Ho · Larry Wasserman -
2015 Poster: Nonparametric von Mises Estimators for Entropies, Divergences and Mutual Informations »
Kirthevasan Kandasamy · Akshay Krishnamurthy · Barnabas Poczos · Larry Wasserman · james m robins -
2015 Poster: A Convergent Gradient Descent Algorithm for Rank Minimization and Semidefinite Programming from Random Linear Measurements »
Qinqing Zheng · John Lafferty -
2014 Poster: Blossom Tree Graphical Models »
Zhe Liu · John Lafferty -
2014 Poster: Quantized Estimation of Gaussian Sequence Models in Euclidean Balls »
Yuancheng Zhu · John Lafferty -
2013 Workshop: Modern Nonparametric Methods in Machine Learning »
Arthur Gretton · Mladen Kolar · Samory Kpotufe · John Lafferty · Han Liu · Bernhard Schölkopf · Alexander Smola · Rob Nowak · Mikhail Belkin · Lorenzo Rosasco · peter bickel · Yue Zhao -
2013 Poster: Cluster Trees on Manifolds »
Sivaraman Balakrishnan · Srivatsan Narayanan · Alessandro Rinaldo · Aarti Singh · Larry Wasserman -
2012 Workshop: Algebraic Topology and Machine Learning »
Sivaraman Balakrishnan · Alessandro Rinaldo · Donald Sheehy · Aarti Singh · Larry Wasserman -
2012 Workshop: Modern Nonparametric Methods in Machine Learning »
Sivaraman Balakrishnan · Arthur Gretton · Mladen Kolar · John Lafferty · Han Liu · Tong Zhang -
2012 Poster: Nonparametric Reduced Rank Regression »
Rina Foygel · Michael Horrell · Mathias Drton · John Lafferty -
2012 Poster: Exponential Concentration for Mutual Information Estimation with Application to Forests »
Han Liu · John Lafferty · Larry Wasserman -
2011 Workshop: Philosophy and Machine Learning »
Marcello Pelillo · Joachim M Buhmann · Tiberio Caetano · Bernhard Schölkopf · Larry Wasserman -
2011 Workshop: Copulas in Machine Learning »
Gal Elidan · Zoubin Ghahramani · John Lafferty -
2010 Spotlight: Graph-Valued Regression »
Han Liu · Xi Chen · John Lafferty · Larry Wasserman -
2010 Poster: Graph-Valued Regression »
Han Liu · Xi Chen · John Lafferty · Larry Wasserman -
2010 Poster: Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models »
Han Liu · Kathryn Roeder · Larry Wasserman -
2008 Poster: Nonparametric regression and classification with joint sparsity constraints »
Han Liu · John Lafferty · Larry Wasserman -
2008 Spotlight: Nonparametric regression and classification with joint sparsity constraints »
Han Liu · John Lafferty · Larry Wasserman -
2007 Poster: SpAM: Sparse Additive Models »
Pradeep Ravikumar · Han Liu · John Lafferty · Larry Wasserman -
2007 Spotlight: SpAM: Sparse Additive Models »
Pradeep Ravikumar · Han Liu · John Lafferty · Larry Wasserman -
2007 Poster: Compressed Regression »
Shuheng Zhou · John Lafferty · Larry Wasserman -
2006 Poster: Inferring Graphical Model Structure using $\ell_1$-Regularized Pseudo-Likelihood »
Martin J Wainwright · Pradeep Ravikumar · John Lafferty -
2006 Spotlight: Inferring Graphical Model Structure using $\ell_1$-Regularized Pseudo-Likelihood »
Martin J Wainwright · Pradeep Ravikumar · John Lafferty