Timezone: »
Author Information
Le Song (Carnegie Mellon University)
Alexander Smola (Amazon)
**AWS Machine Learning**
Karsten Borgwardt (ETH Zurich)
Karsten Borgwardt is Professor of Data Mining at ETH Zürich, at the Department of Biosystems located in Basel. His work has won several awards, including the NIPS 2009 Outstanding Paper Award, the Krupp Award for Young Professors 2013 and a Starting Grant 2014 from the ERC-backup scheme of the Swiss National Science Foundation. Since 2013, he is heading the Marie Curie Initial Training Network for "Machine Learning for Personalized Medicine" with 12 partner labs in 8 countries (http://www.mlpm.eu). The business magazine "Capital" listed him as one of the "Top 40 under 40" in Science in/from Germany in 2014, 2015 and 2016. For more information, visit: https://www.bsse.ethz.ch/mlcb
Arthur Gretton (Gatsby Unit, UCL)
Arthur Gretton is a Professor with the Gatsby Computational Neuroscience Unit at UCL. He received degrees in Physics and Systems Engineering from the Australian National University, and a PhD with Microsoft Research and the Signal Processing and Communications Laboratory at the University of Cambridge. He previously worked at the MPI for Biological Cybernetics, and at the Machine Learning Department, Carnegie Mellon University. Arthur's recent research interests in machine learning include the design and training of generative models, both implicit (e.g. GANs) and explicit (high/infinite dimensional exponential family models), nonparametric hypothesis testing, and kernel methods. He has been an associate editor at IEEE Transactions on Pattern Analysis and Machine Intelligence from 2009 to 2013, an Action Editor for JMLR since April 2013, an Area Chair for NeurIPS in 2008 and 2009, a Senior Area Chair for NeurIPS in 2018, an Area Chair for ICML in 2011 and 2012, and a member of the COLT Program Committee in 2013. Arthur was program chair for AISTATS in 2016 (with Christian Robert), tutorials chair for ICML 2018 (with Ruslan Salakhutdinov), workshops chair for ICML 2019 (with Honglak Lee), program chair for the Dali workshop in 2019 (with Krikamol Muandet and Shakir Mohammed), and co-organsier of the Machine Learning Summer School 2019 in London (with Marc Deisenroth).
Related Events (a corresponding poster, oral, or spotlight)
-
2007 Oral: Colored Maximum Variance Unfolding »
Tue. Dec 4th 06:30 -- 06:50 PM Room
More from the Same Authors
-
2021 Spotlight: Mixture Proportion Estimation and PU Learning:A Modern Approach »
Saurabh Garg · Yifan Wu · Alexander Smola · Sivaraman Balakrishnan · Zachary Lipton -
2021 : Benchmarking Multimodal AutoML for Tabular Data with Text Fields »
Xingjian Shi · Jonas Mueller · Nick Erickson · Mu Li · Alexander Smola -
2021 : Kernel Methods for Multistage Causal Inference: Mediation Analysis and Dynamic Treatment Effects »
Rahul Singh · Ritsugen Jo · Arthur Gretton -
2021 : Composite Goodness-of-fit Tests with Kernels »
Oscar Key · Tamara Fernandez · Arthur Gretton · Francois-Xavier Briol -
2022 : RLSBench: A Large-Scale Empirical Study of Domain Adaptation Under Relaxed Label Shift »
Saurabh Garg · Nick Erickson · James Sharpnack · Alexander Smola · Sivaraman Balakrishnan · Zachary Lipton -
2022 Poster: Adaptive Interest for Emphatic Reinforcement Learning »
Martin Klissarov · Rasool Fakoor · Jonas Mueller · Kavosh Asadi · Taesup Kim · Alexander Smola -
2022 Poster: Optimal Rates for Regularized Conditional Mean Embedding Learning »
Zhu Li · Dimitri Meunier · Mattes Mollenhauer · Arthur Gretton -
2022 Poster: KSD Aggregated Goodness-of-fit Test »
Antonin Schrab · Benjamin Guedj · Arthur Gretton -
2022 Poster: Efficient Aggregated Kernel Tests using Incomplete $U$-statistics »
Antonin Schrab · Ilmun Kim · Benjamin Guedj · Arthur Gretton -
2022 Poster: Faster Deep Reinforcement Learning with Slower Online Network »
Kavosh Asadi · Rasool Fakoor · Omer Gottesman · Taesup Kim · Michael Littman · Alexander Smola -
2022 Poster: Graph Reordering for Cache-Efficient Near Neighbor Search »
Benjamin Coleman · Santiago Segarra · Alexander Smola · Anshumali Shrivastava -
2021 Workshop: Machine Learning Meets Econometrics (MLECON) »
David Bruns-Smith · Arthur Gretton · Limor Gultchin · Niki Kilbertus · Krikamol Muandet · Evan Munro · Angela Zhou -
2021 Poster: KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support »
Pierre Glaser · Michael Arbel · Arthur Gretton -
2021 Poster: Mixture Proportion Estimation and PU Learning:A Modern Approach »
Saurabh Garg · Yifan Wu · Alexander Smola · Sivaraman Balakrishnan · Zachary Lipton -
2021 Poster: Deep Explicit Duration Switching Models for Time Series »
Abdul Fatir Ansari · Konstantinos Benidis · Richard Kurle · Ali Caner Turkmen · Harold Soh · Alexander Smola · Bernie Wang · Tim Januschowski -
2021 Poster: Deep Proxy Causal Learning and its Application to Confounded Bandit Policy Evaluation »
Ritsugen Jo · Heishiro Kanagawa · Arthur Gretton -
2021 Poster: Continuous Doubly Constrained Batch Reinforcement Learning »
Rasool Fakoor · Jonas Mueller · Kavosh Asadi · Pratik Chaudhari · Alexander Smola -
2021 Poster: Self-Supervised Learning with Kernel Dependence Maximization »
Yazhe Li · Roman Pogodin · Danica J. Sutherland · Arthur Gretton -
2020 Poster: A Non-Asymptotic Analysis for Stein Variational Gradient Descent »
Anna Korba · Adil Salim · Michael Arbel · Giulia Luise · Arthur Gretton -
2020 Poster: Uncovering the Topology of Time-Varying fMRI Data using Cubical Persistence »
Bastian Rieck · Tristan Yates · Christian Bock · Karsten Borgwardt · Guy Wolf · Nicholas Turk-Browne · Smita Krishnaswamy -
2020 Spotlight: Uncovering the Topology of Time-Varying fMRI Data using Cubical Persistence »
Bastian Rieck · Tristan Yates · Christian Bock · Karsten Borgwardt · Guy Wolf · Nicholas Turk-Browne · Smita Krishnaswamy -
2020 Poster: Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation »
Rasool Fakoor · Jonas Mueller · Nick Erickson · Pratik Chaudhari · Alexander Smola -
2020 Poster: A kernel test for quasi-independence »
Tamara Fernandez · Wenkai Xu · Marc Ditzhaus · Arthur Gretton -
2020 Spotlight: A kernel test for quasi-independence »
Tamara Fernandez · Wenkai Xu · Marc Ditzhaus · Arthur Gretton -
2019 : Invited Talk - Alexander J. Smola - Sets and symmetries »
Alexander Smola -
2019 Poster: Wasserstein Weisfeiler-Lehman Graph Kernels »
Matteo Togninalli · Elisabetta Ghisu · Felipe Llinares-Lopez · Bastian Rieck · Karsten Borgwardt -
2019 Spotlight: Wasserstein Weisfeiler-Lehman Graph Kernels »
Matteo Togninalli · Elisabetta Ghisu · Felipe Llinares-López · Bastian Rieck · Karsten Borgwardt -
2019 Poster: Exponential Family Estimation via Adversarial Dynamics Embedding »
Bo Dai · Zhen Liu · Hanjun Dai · Niao He · Arthur Gretton · Le Song · Dale Schuurmans -
2019 Poster: Maximum Mean Discrepancy Gradient Flow »
Michael Arbel · Anna Korba · Adil Salim · Arthur Gretton -
2019 Poster: Kernel Instrumental Variable Regression »
Rahul Singh · Maneesh Sahani · Arthur Gretton -
2019 Oral: Kernel Instrumental Variable Regression »
Rahul Singh · Maneesh Sahani · Arthur Gretton -
2019 Tutorial: Interpretable Comparison of Distributions and Models »
Wittawat Jitkrittum · Danica J. Sutherland · Arthur Gretton -
2018 Poster: Informative Features for Model Comparison »
Wittawat Jitkrittum · Heishiro Kanagawa · Patsorn Sangkloy · James Hays · Bernhard Schölkopf · Arthur Gretton -
2018 Poster: BRUNO: A Deep Recurrent Model for Exchangeable Data »
Iryna Korshunova · Jonas Degrave · Ferenc Huszar · Yarin Gal · Arthur Gretton · Joni Dambre -
2018 Poster: On gradient regularizers for MMD GANs »
Michael Arbel · Danica J. Sutherland · Mikołaj Bińkowski · Arthur Gretton -
2017 : Conditional Densities and Efficient Models in Infinite Exponential Families »
Arthur Gretton -
2017 : TBA11 »
Alexander Smola -
2017 Oral: Deep Sets »
Manzil Zaheer · Satwik Kottur · Siamak Ravanbakhsh · Barnabas Poczos · Ruslan Salakhutdinov · Alexander Smola -
2017 Poster: Deep Sets »
Manzil Zaheer · Satwik Kottur · Siamak Ravanbakhsh · Barnabas Poczos · Ruslan Salakhutdinov · Alexander Smola -
2017 Poster: A Linear-Time Kernel Goodness-of-Fit Test »
Wittawat Jitkrittum · Wenkai Xu · Zoltan Szabo · Kenji Fukumizu · Arthur Gretton -
2017 Oral: A Linear-Time Kernel Goodness-of-Fit Test »
Wittawat Jitkrittum · Wenkai Xu · Zoltan Szabo · Kenji Fukumizu · Arthur Gretton -
2016 Workshop: Adaptive and Scalable Nonparametric Methods in Machine Learning »
Aaditya Ramdas · Arthur Gretton · Bharath Sriperumbudur · Han Liu · John Lafferty · Samory Kpotufe · Zoltán Szabó -
2016 : Discussion panel »
Ian Goodfellow · Soumith Chintala · Arthur Gretton · Sebastian Nowozin · Aaron Courville · Yann LeCun · Emily Denton -
2016 : Learning features to distinguish distributions »
Arthur Gretton -
2016 Oral: Interpretable Distribution Features with Maximum Testing Power »
Wittawat Jitkrittum · Zoltán Szabó · Kacper P Chwialkowski · Arthur Gretton -
2016 Poster: Variance Reduction in Stochastic Gradient Langevin Dynamics »
Kumar Avinava Dubey · Sashank J. Reddi · Sinead Williamson · Barnabas Poczos · Alexander Smola · Eric Xing -
2016 Poster: Interpretable Distribution Features with Maximum Testing Power »
Wittawat Jitkrittum · Zoltán Szabó · Kacper P Chwialkowski · Arthur Gretton -
2016 Poster: Proximal Stochastic Methods for Nonsmooth Nonconvex Finite-Sum Optimization »
Sashank J. Reddi · Suvrit Sra · Barnabas Poczos · Alexander Smola -
2016 Poster: Finding significant combinations of features in the presence of categorical covariates »
Laetitia Papaxanthos · Felipe Llinares-López · Dean Bodenham · Karsten Borgwardt -
2015 : Scaling Machine Learning »
Alexander Smola -
2015 : *Arthur Gretton* Learning with Probabilities as Inputs, Using Kernels »
Arthur Gretton -
2015 Workshop: Nonparametric Methods for Large Scale Representation Learning »
Andrew G Wilson · Alexander Smola · Eric Xing -
2015 Poster: Fast and Guaranteed Tensor Decomposition via Sketching »
Yining Wang · Hsiao-Yu Tung · Alexander Smola · Anima Anandkumar -
2015 Spotlight: Fast and Guaranteed Tensor Decomposition via Sketching »
Yining Wang · Hsiao-Yu Tung · Alexander Smola · Anima Anandkumar -
2015 Poster: Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families »
Heiko Strathmann · Dino Sejdinovic · Samuel Livingstone · Zoltan Szabo · Arthur Gretton -
2015 Poster: On Variance Reduction in Stochastic Gradient Descent and its Asynchronous Variants »
Sashank J. Reddi · Ahmed Hefny · Suvrit Sra · Barnabas Poczos · Alexander Smola -
2015 Poster: Halting in Random Walk Kernels »
Mahito Sugiyama · Karsten Borgwardt -
2015 Poster: Fast Two-Sample Testing with Analytic Representations of Probability Measures »
Kacper P Chwialkowski · Aaditya Ramdas · Dino Sejdinovic · Arthur Gretton -
2014 Workshop: Modern Nonparametrics 3: Automating the Learning Pipeline »
Eric Xing · Mladen Kolar · Arthur Gretton · Samory Kpotufe · Han Liu · Zoltán Szabó · Alan Yuille · Andrew G Wilson · Ryan Tibshirani · Sasha Rakhlin · Damian Kozbur · Bharath Sriperumbudur · David Lopez-Paz · Kirthevasan Kandasamy · Francesco Orabona · Andreas Damianou · Wacha Bounliphone · Yanshuai Cao · Arijit Das · Yingzhen Yang · Giulia DeSalvo · Dmitry Storcheus · Roberto Valerio -
2014 Poster: Communication Efficient Distributed Machine Learning with the Parameter Server »
Mu Li · David G Andersen · Alexander Smola · Kai Yu -
2014 Poster: A Wild Bootstrap for Degenerate Kernel Tests »
Kacper P Chwialkowski · Dino Sejdinovic · Arthur Gretton -
2014 Poster: Spectral Methods for Indian Buffet Process Inference »
Hsiao-Yu Tung · Alexander Smola -
2014 Oral: A Wild Bootstrap for Degenerate Kernel Tests »
Kacper P Chwialkowski · Dino Sejdinovic · Arthur Gretton -
2013 Workshop: New Directions in Transfer and Multi-Task: Learning Across Domains and Tasks »
Urun Dogan · Marius Kloft · Tatiana Tommasi · Francesco Orabona · Massimiliano Pontil · Sinno Jialin Pan · Shai Ben-David · Arthur Gretton · Fei Sha · Marco Signoretto · Rajhans Samdani · Yun-Qian Miao · Mohammad Gheshlaghi azar · Ruth Urner · Christoph Lampert · Jonathan How -
2013 Workshop: Topic Models: Computation, Application, and Evaluation »
David Mimno · Amr Ahmed · Jordan Boyd-Graber · Ankur Moitra · Hanna Wallach · Alexander Smola · David Blei · Anima Anandkumar -
2013 Workshop: Randomized Methods for Machine Learning »
David Lopez-Paz · Quoc V Le · Alexander Smola -
2013 Workshop: Modern Nonparametric Methods in Machine Learning »
Arthur Gretton · Mladen Kolar · Samory Kpotufe · John Lafferty · Han Liu · Bernhard Schölkopf · Alexander Smola · Rob Nowak · Mikhail Belkin · Lorenzo Rosasco · peter bickel · Yue Zhao -
2013 Poster: Scalable kernels for graphs with continuous attributes »
Aasa Feragen · Niklas Kasenburg · Jens Petersen · Marleen de Bruijne · Karsten Borgwardt -
2013 Poster: Rapid Distance-Based Outlier Detection via Sampling »
Mahito Sugiyama · Karsten Borgwardt -
2013 Poster: B-test: A Non-parametric, Low Variance Kernel Two-sample Test »
Wojciech Zaremba · Arthur Gretton · Matthew B Blaschko -
2013 Poster: A Kernel Test for Three-Variable Interactions »
Dino Sejdinovic · Arthur Gretton · Wicher Bergsma -
2013 Poster: It is all in the noise: Efficient multi-task Gaussian process inference with structured residuals »
Barbara Rakitsch · Christoph Lippert · Karsten Borgwardt · Oliver Stegle -
2013 Oral: A Kernel Test for Three-Variable Interactions »
Dino Sejdinovic · Arthur Gretton · Wicher Bergsma -
2013 Poster: Variance Reduction for Stochastic Gradient Optimization »
Chong Wang · Xi Chen · Alexander Smola · Eric Xing -
2012 Workshop: Confluence between Kernel Methods and Graphical Models »
Le Song · Arthur Gretton · Alexander Smola -
2012 Workshop: Modern Nonparametric Methods in Machine Learning »
Sivaraman Balakrishnan · Arthur Gretton · Mladen Kolar · John Lafferty · Han Liu · Tong Zhang -
2012 Session: Oral Session 10 »
Alexander Smola -
2012 Poster: Learning Networks of Heterogeneous Influence »
Nan Du · Le Song · Alexander Smola · Ming Yuan -
2012 Poster: FastEx: Fast Clustering with Exponential Families »
Amr Ahmed · Sujith Ravi · Shravan M Narayanamurthy · Alexander Smola -
2012 Spotlight: Learning Networks of Heterogeneous Influence »
Nan Du · Le Song · Alexander Smola · Ming Yuan -
2012 Poster: Optimal kernel choice for large-scale two-sample tests »
Arthur Gretton · Bharath Sriperumbudur · Dino Sejdinovic · Heiko Strathmann · Sivaraman Balakrishnan · Massimiliano Pontil · Kenji Fukumizu -
2011 Workshop: Big Learning: Algorithms, Systems, and Tools for Learning at Scale »
Joseph E Gonzalez · Sameer Singh · Graham Taylor · James Bergstra · Alice Zheng · Misha Bilenko · Yucheng Low · Yoshua Bengio · Michael Franklin · Carlos Guestrin · Andrew McCallum · Alexander Smola · Michael Jordan · Sugato Basu -
2011 Workshop: From statistical genetics to predictive models in personalized medicine »
Karsten Borgwardt · Oliver Stegle · Shipeng Yu · Glenn Fung · Faisal Farooq · Balaji R Krishnapuram -
2011 Poster: Kernel Bayes' Rule »
Kenji Fukumizu · Le Song · Arthur Gretton -
2011 Poster: Learning sparse inverse covariance matrices in the presence of confounders »
Oliver Stegle · Christoph Lippert · Joris M Mooij · Neil D Lawrence · Karsten Borgwardt -
2011 Poster: Spectral Methods for Learning Multivariate Latent Tree Structure »
Anima Anandkumar · Kamalika Chaudhuri · Daniel Hsu · Sham M Kakade · Le Song · Tong Zhang -
2011 Poster: Kernel Embeddings of Latent Tree Graphical Models »
Le Song · Ankur P Parikh · Eric Xing -
2011 Tutorial: Graphical Models for the Internet »
Amr Ahmed · Alexander Smola -
2010 Workshop: Low-rank Methods for Large-scale Machine Learning »
Arthur Gretton · Michael W Mahoney · Mehryar Mohri · Ameet S Talwalkar -
2010 Workshop: Challenges of Data Visualization »
Barbara Hammer · Laurens van der Maaten · Fei Sha · Alexander Smola -
2010 Poster: Word Features for Latent Dirichlet Allocation »
James Petterson · Alexander Smola · Tiberio Caetano · Wray L Buntine · Shravan M Narayanamurthy -
2010 Poster: Optimal Web-Scale Tiering as a Flow Problem »
Gilbert Leung · Novi Quadrianto · Alexander Smola · Kostas Tsioutsiouliklis -
2010 Poster: Multitask Learning without Label Correspondences »
Novi Quadrianto · Alexander Smola · Tiberio Caetano · S.V.N. Vishwanathan · James Petterson -
2010 Poster: Parallelized Stochastic Gradient Descent »
Martin A Zinkevich · Markus Weimer · Alexander Smola · Lihong Li -
2009 Workshop: Temporal Segmentation: Perspectives from Statistics, Machine Learning, and Signal Processing »
Stephane Canu · Olivier Cappé · Arthur Gretton · Zaid Harchaoui · Alain Rakotomamonjy · Jean-Philippe Vert -
2009 Workshop: Transfer Learning for Structured Data »
Sinno Jialin Pan · Ivor W Tsang · Le Song · Karsten Borgwardt · Qiang Yang -
2009 Workshop: Large-Scale Machine Learning: Parallelism and Massive Datasets »
Alexander Gray · Arthur Gretton · Alexander Smola · Joseph E Gonzalez · Carlos Guestrin -
2009 Session: Oral session 10: Neural Modeling and Imaging »
Arthur Gretton -
2009 Poster: Fast subtree kernels on graphs »
Nino Shervashidze · Karsten Borgwardt -
2009 Poster: Kernel Choice and Classifiability for RKHS Embeddings of Probability Distributions »
Bharath Sriperumbudur · Kenji Fukumizu · Arthur Gretton · Gert Lanckriet · Bernhard Schölkopf -
2009 Oral: Fast Subtree Kernels on Graphs »
Nino Shervashidze · Karsten Borgwardt -
2009 Oral: Kernel Choice and Classifiability for RKHS Embeddings of Probability Distributions »
Bharath Sriperumbudur · Kenji Fukumizu · Arthur Gretton · Gert Lanckriet · Bernhard Schölkopf -
2009 Poster: Time-Varying Dynamic Bayesian Networks »
Le Song · Mladen Kolar · Eric Xing -
2009 Poster: Slow Learners are Fast »
Martin A Zinkevich · Alexander Smola · John Langford -
2009 Poster: Nonlinear directed acyclic structure learning with weakly additive noise models »
Robert E Tillman · Arthur Gretton · Peter Spirtes -
2009 Spotlight: Time-Varying Dynamic Bayesian Networks »
Le Song · Mladen Kolar · Eric Xing -
2009 Poster: Distribution Matching for Transduction »
Novi Quadrianto · James Petterson · Alexander Smola -
2009 Poster: Sparsistent Learning of Varying-coefficient Models with Structural Changes »
Mladen Kolar · Le Song · Eric Xing -
2009 Poster: A Fast, Consistent Kernel Two-Sample Test »
Arthur Gretton · Kenji Fukumizu · Zaid Harchaoui · Bharath Sriperumbudur -
2009 Spotlight: A Fast, Consistent Kernel Two-Sample Test »
Arthur Gretton · Kenji Fukumizu · Zaid Harchaoui · Bharath Sriperumbudur -
2009 Spotlight: Sparsistent Learning of Varying-coefficient Models with Structural Changes »
Mladen Kolar · Le Song · Eric Xing -
2008 Workshop: Kernel Learning: Automatic Selection of Optimal Kernels »
Corinna Cortes · Arthur Gretton · Gert Lanckriet · Mehryar Mohri · Afshin Rostamizadeh -
2008 Workshop: Structured Input - Structured Output »
Karsten Borgwardt · Koji Tsuda · Vishwanathan S V N · Xifeng Yan -
2008 Poster: Kernelized Sorting »
Novi Quadrianto · Le Song · Alexander Smola -
2008 Poster: Kernel Measures of Independence for non-iid Data »
Xinhua Zhang · Le Song · Arthur Gretton · Alexander Smola -
2008 Poster: Characteristic Kernels on Groups and Semigroups »
Kenji Fukumizu · Bharath Sriperumbudur · Arthur Gretton · Bernhard Schölkopf -
2008 Spotlight: Kernelized Sorting »
Novi Quadrianto · Le Song · Alexander Smola -
2008 Spotlight: Kernel Measures of Independence for non-iid Data »
Xinhua Zhang · Le Song · Arthur Gretton · Alexander Smola -
2008 Oral: Characteristic Kernels on Groups and Semigroups »
Kenji Fukumizu · Bharath Sriperumbudur · Arthur Gretton · Bernhard Schölkopf -
2008 Poster: Tighter Bounds for Structured Estimation »
Olivier Chapelle · Chuong B Do · Quoc V Le · Alexander Smola · Choon Hui Teo -
2008 Session: Oral session 2: Sensorimotor Control »
Arthur Gretton -
2008 Poster: Robust Near-Isometric Matching via Structured Learning of Graphical Models »
Julian J McAuley · Tiberio Caetano · Alexander Smola -
2008 Poster: Learning Taxonomies by Dependence Maximization »
Matthew B Blaschko · Arthur Gretton -
2007 Workshop: Representations and Inference on Probability Distributions »
Kenji Fukumizu · Arthur Gretton · Alexander Smola -
2007 Spotlight: Kernel Measures of Conditional Dependence »
Kenji Fukumizu · Arthur Gretton · Xiaohai Sun · Bernhard Schölkopf -
2007 Poster: Kernel Measures of Conditional Dependence »
Kenji Fukumizu · Arthur Gretton · Xiaohai Sun · Bernhard Schölkopf -
2007 Poster: Convex Learning with Invariances »
Choon Hui Teo · Amir Globerson · Sam T Roweis · Alexander Smola -
2007 Spotlight: A Kernel Statistical Test of Independence »
Arthur Gretton · Kenji Fukumizu · Choon Hui Teo · Le Song · Bernhard Schölkopf · Alexander Smola -
2007 Spotlight: Bundle Methods for Machine Learning »
Alexander Smola · Vishwanathan S V N · Quoc V Le -
2007 Poster: COFI RANK - Maximum Margin Matrix Factorization for Collaborative Ranking »
Markus Weimer · Alexandros Karatzoglou · Quoc V Le · Alexander Smola -
2007 Poster: A Kernel Statistical Test of Independence »
Arthur Gretton · Kenji Fukumizu · Choon Hui Teo · Le Song · Bernhard Schölkopf · Alexander Smola -
2007 Poster: Bundle Methods for Machine Learning »
Alexander Smola · Vishwanathan S V N · Quoc V Le -
2007 Spotlight: COFI RANK - Maximum Margin Matrix Factorization for Collaborative Ranking »
Markus Weimer · Alexandros Karatzoglou · Quoc V Le · Alexander Smola -
2007 Demonstration: Elefant »
Kishor Gawande · Alexander Smola · Vishwanathan S V N · Li Cheng · Simon A Guenter -
2007 Spotlight: Convex Learning with Invariances »
Choon Hui Teo · Amir Globerson · Sam T Roweis · Alexander Smola -
2006 Poster: Fast Computation of Graph Kernels »
Vishwanathan S V N · Karsten Borgwardt · Nic Schraudolph -
2006 Poster: A Kernel Method for the Two-Sample-Problem »
Arthur Gretton · Karsten Borgwardt · Malte J Rasch · Bernhard Schölkopf · Alexander Smola -
2006 Poster: Correcting Sample Selection Bias by Unlabeled Data »
Jiayuan Huang · Alexander Smola · Arthur Gretton · Karsten Borgwardt · Bernhard Schölkopf -
2006 Spotlight: Correcting Sample Selection Bias by Unlabeled Data »
Jiayuan Huang · Alexander Smola · Arthur Gretton · Karsten Borgwardt · Bernhard Schölkopf -
2006 Talk: A Kernel Method for the Two-Sample-Problem »
Arthur Gretton · Karsten Borgwardt · Malte J Rasch · Bernhard Schölkopf · Alexander Smola