Timezone: »
Cluster stability has recently received growing attention as a cluster validation criterion in a sample-based framework. However, recent work [2] has shown that as the sample size increases to infinity, any clustering model will usually become asymptotically stable. This led to the conclusion that stability is lacking as a theoretical and practical tool. The discrepancy between this conclusion and the success of stability in practice has remained an open question, which we attempt to address. Our theoretical approach is that stability, as used by cluster validation algorithms, is similar in certain respects to measures of generalization in a model-selection framework. In such cases, the model chosen governs the convergence rate of generalization bounds. By arguing that these rates are more important than the sample size, we are led to the prediction that stability-based cluster validation algorithms should not degrade with increasing sample size, despite the asymptotic universal stability. This prediction is substantiated by a theoretical analysis as well as several empirical results. We conclude that stability remains a meaningful theoretical and practical criterion for cluster validity over finite samples.
Author Information
Ohad Shamir (Weizmann Institute of Science)
Naftali Tishby (The Hebrew University Jerusalem)
Naftali Tishby, is a professor of computer science and the director of the Interdisciplinary Center for Neural Computation (ICNC) at the Hebrew university of Jerusalem. He received his Ph.D. in theoretical physics from the Hebrew University and was a research staff member at MIT and Bell Labs from 1985 to 1991. He was also a visiting professor at Princeton NECI, the University of Pennsylvania and the University of California at Santa Barbara. Dr. Tishby is a leader of machine learning research and computational neuroscience. He was among the first to introduce methods from statistical physics into learning theory, and dynamical systems techniques in speech processing. His current research is at the interface between computer science, statistical physics and computational neuroscience and concerns the foundations of biological information processing and the connections between dynamics and information.
Related Events (a corresponding poster, oral, or spotlight)
-
2007 Poster: Cluster Stability for Finite Samples »
Tue. Dec 4th 06:30 -- 06:40 PM Room
More from the Same Authors
-
2017 : How do the Deep Learning layers converge to the Information Bottleneck limit by Stochastic Gradient Descent? »
Naftali Tishby -
2016 : Principles and Algorithms for Self-Motivated Behaviour »
Naftali Tishby -
2014 Workshop: Novel Trends and Applications in Reinforcement Learning »
Csaba Szepesvari · Marc Deisenroth · Sergey Levine · Pedro Ortega · Brian Ziebart · Emma Brunskill · Naftali Tishby · Gerhard Neumann · Daniel Lee · Sridhar Mahadevan · Pieter Abbeel · David Silver · Vicenç Gómez -
2013 Workshop: Planning with Information Constraints for Control, Reinforcement Learning, Computational Neuroscience, Robotics and Games. »
Hilbert J Kappen · Naftali Tishby · Jan Peters · Evangelos Theodorou · David H Wolpert · Pedro Ortega -
2012 Workshop: Information in Perception and Action »
Naftali Tishby · Daniel Polani · Tobias Jung -
2012 Poster: Relax and Randomize : From Value to Algorithms »
Sasha Rakhlin · Ohad Shamir · Karthik Sridharan -
2012 Oral: Relax and Randomize : From Value to Algorithms »
Sasha Rakhlin · Ohad Shamir · Karthik Sridharan -
2011 Poster: Efficient Online Learning via Randomized Rounding »
Nicolò Cesa-Bianchi · Ohad Shamir -
2011 Poster: From Bandits to Experts: On the Value of Side-Observations »
Shie Mannor · Ohad Shamir -
2011 Spotlight: From Bandits to Experts: On the Value of Side-Observations »
Shie Mannor · Ohad Shamir -
2011 Oral: Efficient Online Learning via Randomized Rounding »
Nicolò Cesa-Bianchi · Ohad Shamir -
2011 Poster: Better Mini-Batch Algorithms via Accelerated Gradient Methods »
Andrew Cotter · Ohad Shamir · Nati Srebro · Karthik Sridharan -
2011 Poster: Efficient Learning of Generalized Linear and Single Index Models with Isotonic Regression »
Sham M Kakade · Adam Kalai · Varun Kanade · Ohad Shamir -
2011 Poster: Learning with the weighted trace-norm under arbitrary sampling distributions »
Rina Foygel · Russ Salakhutdinov · Ohad Shamir · Nati Srebro -
2011 Tutorial: Information Theory in Learning and Control »
Naftali Tishby -
2010 Poster: Tight Sample Complexity of Large-Margin Learning »
Sivan Sabato · Nati Srebro · Naftali Tishby -
2008 Workshop: Principled Theoretical Frameworks for the Perception-Action Cycle »
Daniel Polani · Naftali Tishby -
2008 Mini Symposium: Principled Theoretical Frameworks for the Perception-Action Cycle »
Daniel Polani · Naftali Tishby -
2008 Poster: On the Reliability of Clustering Stability in the Large Sample Regime »
Ohad Shamir · Naftali Tishby -
2008 Spotlight: On the Reliability of Clustering Stability in the Large Sample Regime »
Ohad Shamir · Naftali Tishby -
2006 Workshop: Revealing Hidden Elements of Dynamical Systems »
Naftali Tishby -
2006 Poster: Information Bottleneck for Non Co-Occurrence Data »
Yevgeny Seldin · Noam Slonim · Naftali Tishby